1. Liddington, R. C. Structural Basis of Protein–Protein Interactions. Protein-Protein Interactions 003–014 doi:10.1385/1-59259-762-9:003.
2. Keskin, O., Gursoy, A., Ma, B. & Nussinov, R. Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem. Rev. 108, 1225–1244 (2008).
3. Nooren, I. M. A. NEW EMBO MEMBER’S REVIEW: Diversity of protein-protein interactions. The EMBO Journal vol. 22 3486–3492 (2003).
4. Cong, Q., Anishchenko, I., Ovchinnikov, S. & Baker, D. Protein interaction networks revealed by proteome coevolution. Science 365, 185–189 (2019).
5. Zhang, Q. C. et al. Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature 490, 556–560 (2012).
6. Marshall, G. R. & Vakser, I. A. Protein-Protein Docking Methods. Proteomics and Protein-Protein Interactions 115–146 doi:10.1007/0-387-24532-4_6.
7. Kundrotas, P. J., Zhu, Z., Janin, J. & Vakser, I. A. Templates are available to model nearly all complexes of structurally characterized proteins. Proc. Natl. Acad. Sci. U. S. A. 109, 9438–9441 (2012).
8. Porter, K. A., Desta, I., Kozakov, D. & Vajda, S. What method to use for protein–protein docking? Current Opinion in Structural Biology vol. 55 1–7 (2019).
9. Halperin, I., Ma, B., Wolfson, H. & Nussinov, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 47, 409–443 (2002).
10. Clarke, J. Mechanisms of Folding upon Binding. The FASEB Journal vol. 29 (2015).
11. Eginton, C., Naganathan, S. & Beckett, D. Sequence-function relationships in folding upon binding. Protein Science vol. 24 200–211 (2015).
12. Andrusier, N., Mashiach, E., Nussinov, R. & Wolfson, H. J. Principles of flexible protein-protein docking. Proteins 73, 271–289 (2008).
13. Lensink, M. F. et al. Blind prediction of homo- and hetero-protein complexes: The CASP13-CAPRI experiment. Proteins 87, 1200–1221 (2019).
14. Vreven, T. et al. Updates to the Integrated Protein-Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2. J. Mol. Biol. 427, 3031–3041 (2015).
15. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
16. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
17. Kandathil, S. M., Greener, J. G., Lau, A. M. & Jones, D. T. Ultrafast end-to-end protein structure prediction enables high-throughput exploration of uncharacterised proteins. doi:10.1101/2020.11.27.401232.
18. Chowdhury, R. et al. Single-sequence protein structure prediction using language models from deep learning. bioRxiv 2021.08.02.454840 (2021) doi:10.1101/2021.08.02.454840.
19. Procaccini, A., Lunt, B., Szurmant, H., Hwa, T. & Weigt, M. Dissecting the Specificity of Protein-Protein Interaction in Bacterial Two-Component Signaling: Orphans and Crosstalks. PLoS ONE vol. 6 e19729 (2011).
20. Weigt, M., White, R. A., Szurmant, H., Hoch, J. A. & Hwa, T. Identification of direct residue contacts in protein-protein interaction by message passing. Proc. Natl. Acad. Sci. U. S. A. 106, 67–72 (2009).
21. Hashemifar, S., Neyshabur, B., Khan, A. A. & Xu, J. Predicting protein–protein interactions through sequence-based deep learning. Bioinformatics vol. 34 i802–i810 (2018).
22. Yang, J. et al. Improved protein structure prediction using predicted inter-residue orientations. doi:10.1101/846279.
23. Pozzati, G. et al. Limits and potential of combined folding and docking using PconsDock. doi:10.1101/2021.06.04.446442.
24. Lamb, J. & Elofsson, A. pyconsFold: a fast and easy tool for modelling and docking using distance predictions. Bioinformatics (2021) doi:10.1093/bioinformatics/btab353.
25. Szurmant, H. & Weigt, M. Inter-residue, inter-protein and inter-family coevolution: bridging the scales. Curr. Opin. Struct. Biol. 50, 26–32 (2018).
26. Green, A. G. et al. Large-scale discovery of protein interactions at residue resolution using co-evolution calculated from genomic sequences. Nat. Commun. 12, 1–12 (2021).
27. Kundrotas, P. J. et al. Dockground: A comprehensive data resource for modeling of protein complexes. Protein Sci. 27, 172–181 (2018).
28. Gabler, F. et al. Protein Sequence Analysis Using the MPI Bioinformatics Toolkit. Curr. Protoc. Bioinformatics 72, e108 (2020).
29. Zimmermann, L. et al. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J. Mol. Biol. 430, 2237–2243 (2018).
30. Rajagopala, S. V. et al. The binary protein-protein interaction landscape of Escherichia coli. Nat. Biotechnol. 32, 285–290 (2014).
31. Kuhlbrandt, W. The Resolution Revolution. Science vol. 343 1443–1444 (2014).
32. Orchard, S. et al. The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–63 (2014).
33. Blohm, P. et al. Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis. Nucleic Acids Research vol. 42 D396–D400 (2014).
34. BFD. https://bfd.mmseqs.com/.
35. Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20, 473 (2019).
36. Mitchell, A. L. et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 48, D570–D578 (2020).
37. Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007).
38. Eddy, S. R. Accelerated Profile HMM Searches. PLoS Computational Biology vol. 7 e1002195 (2011).
39. Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Res. 45, D170–D176 (2017).
40. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
41. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).
42. Kosciolek, T. & Jones, D. T. Accurate contact predictions using covariation techniques and machine learning. Proteins 84 Suppl 1, 145–151 (2016).
43. Li, W., Jaroszewski, L. & Godzik, A. Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17, 282–283 (2001).
44. Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins 57, (2004).
45. Vakser, I. A. Evaluation of GRAMM low-resolution docking methodology on the hemagglutinin-antibody complex. Proteins Suppl 1, 226–230 (1997).
46. Singh, A., Dauzhenka, T., Kundrotas, P. J., Sternberg, M. J. E. & Vakser, I. A. Application of docking methodologies to modeled proteins. Proteins 88, 1180–1188 (2020).
47. Anishchenko, I., Kundrotas, P. J. & Vakser, I. A. Contact Potential for Structure Prediction of Proteins and Protein Complexes from Potts Model. Biophys. J. 115, 809–821 (2018).
48. Basu, S. & Wallner, B. DockQ: A Quality Measure for Protein-Protein Docking Models. PLoS One 11, e0161879 (2016).
49. Lensink, M. F. & Wodak, S. J. Docking and scoring protein interactions: CAPRI 2009. Proteins 78, 3073–3084 (2010).
50. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).
51. Szklarczyk, D. et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612 (2020).