1. Malik, Y.A. Properties of Coronavirus and SARS-CoV-2. Malays J Pathol 42, 3-11 (2020).
2. Drosten, C., et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348, 1967-1976 (2003).
3. Ksiazek, T.G., et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348, 1953-1966 (2003).
4. Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D. & Fouchier, R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367, 1814-1820 (2012).
5. Layne, S.P., Hyman, J.M., Morens, D.M. & Taubenberger, J.K. New coronavirus outbreak: Framing questions for pandemic prevention. Sci Transl Med 12(2020).
6. Zhou, P., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273 (2020).
7. Cui, J., Li, F. & Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17, 181-192 (2019).
8. Walls, A.C., et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 183, 1735 (2020).
9. Layne, S.P. & Taubenberger, J.K. Increasing threats from SARS-CoV-2 variants: Time to establish global surveillance. Sci Transl Med 13(2021).
10. Grubaugh, N.D., Hodcroft, E.B., Fauver, J.R., Phelan, A.L. & Cevik, M. Public health actions to control new SARS-CoV-2 variants. Cell (2021).
11. Fenwick, C., et al. A high-throughput cell- and virus-free assay shows reduced neutralization of SARS-CoV-2 variants by COVID-19 convalescent plasma. Sci Transl Med 13(2021).
12. Liu, Y., et al. Neutralizing Activity of BNT162b2-Elicited Serum - Preliminary Report. N Engl J Med (2021).
13. Wu, K., et al. Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine - Preliminary Report. N Engl J Med (2021).
14. Cao, Y., et al. Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. Cell 182, 73-84 e16 (2020).
15. Shi, R., et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 584, 120-124 (2020).
16. Wu, Y., et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 368, 1274-1278 (2020).
17. Barnes, C.O., et al. Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell 182, 828-842 e816 (2020).
18. Rappazzo, C.G., et al. Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science 371, 823-829 (2021).
19. Lv, Z., et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science 369, 1505-1509 (2020).
20. Shiakolas, A.R., et al. Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Rep Med 2, 100313 (2021).
21. Kallewaard, N.L., et al. Structure and Function Analysis of an Antibody Recognizing All Influenza A Subtypes. Cell 166, 596-608 (2016).
22. Wang, W., et al. Human antibody 3E1 targets the HA stem region of H1N1 and H5N6 influenza A viruses. Nat Commun 7, 13577 (2016).
23. Ekiert, D.C., et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333, 843-850 (2011).
24. Yi, C., et al. Junctional and somatic hypermutation-induced CX4C motif is critical for the recognition of a highly conserved epitope on HCV E2 by a human broadly neutralizing antibody. Cell Mol Immunol 18, 675-685 (2021).
25. Law, M., et al. Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat Med 14, 25-27 (2008).
26. Huang, J., et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406-412 (2012).
27. Walker, L.M., et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466-470 (2011).
28. Wang, C., et al. A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies. Nat Commun 12, 1715 (2021).
29. Sauer, M.M., et al. Structural basis for broad coronavirus neutralization. Nat Struct Mol Biol 28, 478-486 (2021).
30. Zhou, P., et al. A protective broadly cross-reactive human antibody defines a conserved site of vulnerability on beta-coronavirus spikes. bioRxiv (2021).
31. Pinto, D., et al. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science (2021).
32. Tortorici, M.A., et al. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature (2021).
33. Corti, D., Purcell, L.A., Snell, G. & Veesler, D. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 184, 3086-3108 (2021).
34. Benton, D.J., et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 588, 327-330 (2020).
35. Cai, Y., et al. Distinct conformational states of SARS-CoV-2 spike protein. Science 369, 1586-1592 (2020).
36. Xia, S., et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30, 343-355 (2020).
37. Zhu, Y., Yu, D., Yan, H., Chong, H. & He, Y. Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity. J Virol 94(2020).
38. Wrapp, D., et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260-1263 (2020).
39. Hoffmann, M., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280 e278 (2020).
40. Belouzard, S., Chu, V.C. & Whittaker, G.R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 106, 5871-5876 (2009).
41. Tang, T., Bidon, M., Jaimes, J.A., Whittaker, G.R. & Daniel, S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 178, 104792 (2020).
42. Walls, A.C., et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci U S A 114, 11157-11162 (2017).
43. Jiang, L., et al. Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci Transl Med 6, 234ra259 (2014).
44. Giang, E., et al. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. Proc Natl Acad Sci U S A 109, 6205-6210 (2012).
45. Poh, C.M., et al. Two linear epitopes on the SARS-CoV-2 spike protein that elicit neutralising antibodies in COVID-19 patients. Nat Commun 11, 2806 (2020).
46. Ren, H. & Zhou, P. Epitope-focused vaccine design against influenza A and B viruses. Curr Opin Immunol 42, 83-90 (2016).
47. Correia, B.E., et al. Proof of principle for epitope-focused vaccine design. Nature 507, 201-206 (2014).
48. Yi, C., et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol Immunol 17, 621-630 (2020).
49. Yuan, Y., et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 8, 15092 (2017).
50. Walls, A.C., et al. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol Biol 23, 899-905 (2016).
51. Tortorici, M.A., et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol 26, 481-489 (2019).
52. Li, Z., et al. The human coronavirus HCoV-229E S-protein structure and receptor binding. Elife 8(2019).
53. Chan, K.K., et al. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science 369, 1261-1265 (2020).