Cancer is a group of diseases characterised by abnormal and undifferentiated cell growth that has the potential to spread to other parts of the body. It is the world's second leading cause of death and morbidity. According to the GLOBOCAN 2020 report, out of 19.3 million new cancer cases and 10 million deaths reported, 544352 new cases and 259793 deaths occurred by non-Hodgkin lymphoma (NHLs). Although, numerous therapeutic approaches like, surgery, radiotherapy, chemotherapy and immunotherapy have been developed to treat cancer, limited success has been achieved, possibly due to severe side effects associated with the drugs used during chemotherapy. Therefore, deciphering the novel compound with least side effects and highly potent against cancer is urgently required. In the present study we used leaf extract of M. oleifera, well-known for its anti-cancer efficacy against different cancer cells, however, its effect on Dalton’s lymphoma, a type of spontaneously occurring T cell lymphoma originated in the thymus of DBA mice is seriously lacking. Therefore, present study was aimed to analyze the therapeutic efficacy of M. oleifera against DL cells. Our results show that leaf extract of M. oleifera (MOML) significantly induces morphological changes in DL cells followed by chromatin condensation, nuclear fragmentation, and ROS generation. We also found significant changes in mitochondrial membrane potential (ΔΨm) in a dose dependent manner. Furthermore, apoptosis of DL cells induced by cell cycle arrest at G2/M and S phase suggested that MOML could be used to treat NHL effectively