TMEM16 scramblases dissipate the plasma membrane lipid asymmetry to activate multiple eukaryotic cellular pathways. It was proposed that lipid headgroups move between leaflets through a membrane-spanning hydrophilic groove. Direct information on lipid-groove interactions is lacking. We report the 2.3 Å resolution cryoEM structure of the Ca2+-bound afTMEM16 scramblase in nanodiscs showing how rearrangement of individual lipids at the open pathway results in pronounced membrane thinning. Only the groove’s intracellular vestibule contacts lipids, and mutagenesis suggests scrambling does not entail specific protein-lipid interactions with the extracellular vestibule. Further, we find scrambling can occur outside a closed groove in thinner membranes and is inhibited in thicker membranes despite an open pathway. Our results show how afTMEM16 thins the membrane to enable scrambling and that an open hydrophilic pathway is not a structural requirement to allow rapid transbilayer movement of lipids. This mechanism could be extended to other scramblases lacking a hydrophilic groove.