1 Salvatore, D., Simonides, W. S., Dentice, M., Zavacki, A. M. & Larsen, P. R. Thyroid hormones and skeletal muscle--new insights and potential implications. Nat Rev Endocrinol 10, 206-214, doi:10.1038/nrendo.2013.238 (2014).
2 Bloise, F. F., Oliveira, T. S., Cordeiro, A. & Ortiga-Carvalho, T. M. Thyroid Hormones Play Role in Sarcopenia and Myopathies. Front Physiol 9, 560, doi:10.3389/fphys.2018.00560 (2018).
3 Lesmana, R. et al. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology 157, 23-38, doi:10.1210/en.2015-1632 (2016).
4 Pernitsky, A. N., McIntosh, L. M. & Anderson, J. E. Hyperthyroidism impairs early repair in normal but not dystrophic mdx mouse tibialis anterior muscle. An in vivo study. Biochem Cell Biol 74, 315-324, doi:10.1139/o96-034 (1996).
5 Biondi, B. & Cooper, D. S. Benefits of thyrotropin suppression versus the risks of adverse effects in differentiated thyroid cancer. Thyroid 20, 135-146, doi:10.1089/thy.2009.0311 (2010).
6 de Oliveira Chachamovitz, D. S. et al. Quality of life, muscle strength, and fatigue perception in patients on suppressive therapy with levothyroxine for differentiated thyroid carcinoma. Am J Clin Oncol 36, 354-361, doi:10.1097/COC.0b013e318248d864 (2013).
7 Taylor, P. N. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol 14, 301-316, doi:10.1038/nrendo.2018.18 (2018).
8 Blum, M. R. et al. Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 313, 2055-2065, doi:10.1001/jama.2015.5161 (2015).
9 Visser, W. E. et al. Physiological thyroid hormone levels regulate numerous skeletal muscle transcripts. J Clin Endocrinol Metab 94, 3487-3496, doi:10.1210/jc.2009-0782 (2009).
10 Malmstroem, S. et al. Muscle Performance and Postural Stability Are Reduced in Patients with Newly Diagnosed Graves' Disease. Thyroid 29, 783-789, doi:10.1089/thy.2018.0318 (2019).
11 Norrelund, H. et al. Muscle mass and function in thyrotoxic patients before and during medical treatment. Clin Endocrinol (Oxf) 51, 693-699, doi:10.1046/j.1365-2265.1999.00861.x (1999).
12 Greenlund, L. J., Nair, K. S. & Brennan, M. D. Changes in body composition in women following treatment of overt and subclinical hyperthyroidism. Endocr Pract 14, 973-978, doi:10.4158/EP.14.8.973 (2008).
13 Samuels, M. H. et al. Effects of Levothyroxine Replacement or Suppressive Therapy on Energy Expenditure and Body Composition. Thyroid 26, 347-355, doi:10.1089/thy.2015.0345 (2016).
14 Schneider, R., Schneider, M., Reiners, C. & Schneider, P. Effects of levothyroxine on bone mineral density, muscle force, and bone turnover markers: a cohort study. J Clin Endocrinol Metab 97, 3926-3934, doi:10.1210/jc.2012-2570 (2012).
15 Dennison, E. M., Sayer, A. A. & Cooper, C. Epidemiology of sarcopenia and insight into possible therapeutic targets. Nat Rev Rheumatol 13, 340-347, doi:10.1038/nrrheum.2017.60 (2017).
16 Dodds, R. M. et al. Grip strength across the life course: normative data from twelve British studies. PLoS One 9, e113637, doi:10.1371/journal.pone.0113637 (2014).
17 Kitajima, Y. & Ono, Y. Estrogens maintain skeletal muscle and satellite cell functions. J Endocrinol 229, 267-275, doi:10.1530/JOE-15-0476 (2016).
18 Ikeda, K., Horie-Inoue, K. & Inoue, S. Functions of estrogen and estrogen receptor signaling on skeletal muscle. J Steroid Biochem Mol Biol 191, 105375, doi:10.1016/j.jsbmb.2019.105375 (2019).
19 Collins, B. C. et al. Estrogen Regulates the Satellite Cell Compartment in Females. Cell Rep 28, 368-381 e366, doi:10.1016/j.celrep.2019.06.025 (2019).
20 Messier, V. et al. Menopause and sarcopenia: A potential role for sex hormones. Maturitas 68, 331-336, doi:10.1016/j.maturitas.2011.01.014 (2011).
21 Sutham, W. et al. Ovariectomy and obesity have equal impact in causing mitochondrial dysfunction and impaired skeletal muscle contraction in rats. Menopause 25, 1448-1458, doi:10.1097/GME.0000000000001149 (2018).
22 Marinello, P. C. et al. Isoflavin-beta modifies muscle oxidative stress and prevents a thyrotoxicosis-induced loss of muscle mass in rats. Muscle Nerve 56, 975-981, doi:10.1002/mus.25546 (2017).
23 Cohen, S. et al. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185, 1083-1095, doi:10.1083/jcb.200901052 (2009).
24 Bowen, T. S., Schuler, G. & Adams, V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle 6, 197-207, doi:10.1002/jcsm.12043 (2015).
25 Yoon, J. A. et al. Evaluation of changes in body composition and proinflammatory marker levels in ovariectomized rats with induced hyperthyroidism. All Life 13, 99-107, doi:10.1080/26895293.2020.1727966 (2020).
26 Csapo, R., Gumpenberger, M. & Wessner, B. Skeletal Muscle Extracellular Matrix - What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. Front Physiol 11, 253, doi:10.3389/fphys.2020.00253 (2020).
27 Chang, Y. C. et al. Oligonol Alleviates Sarcopenia by Regulation of Signaling Pathways Involved in Protein Turnover and Mitochondrial Quality. Mol Nutr Food Res 63, e1801102, doi:10.1002/mnfr.201801102 (2019).
28 Lu, R., Wang, H., Hong, T. & Gao, H. Myopathy after rapid correction of hyperthyroidism: A case report and review of literature. Medicine (Baltimore) 99, e18878, doi:10.1097/MD.0000000000018878 (2020).
29 Mahdy, M. A. A. Skeletal muscle fibrosis: an overview. Cell Tissue Res 375, 575-588, doi:10.1007/s00441-018-2955-2 (2019).
30 Bensamoun, S. F. et al. Thigh muscle stiffness assessed with magnetic resonance elastography in hyperthyroid patients before and after medical treatment. J Magn Reson Imaging 26, 708-713, doi:10.1002/jmri.21073 (2007).
31 Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 21, 204-224, doi:10.1038/s41580-020-0210-7 (2020).
32 Seo, A. Y. et al. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123, 2533-2542, doi:10.1242/jcs.070490 (2010).
33 Yang, S. et al. Functional effects of muscle PGC-1alpha in aged animals. Skelet Muscle 10, 14, doi:10.1186/s13395-020-00231-8 (2020).
34 Cannavino, J., Brocca, L., Sandri, M., Bottinelli, R. & Pellegrino, M. A. PGC1-alpha over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice. J Physiol 592, 4575-4589, doi:10.1113/jphysiol.2014.275545 (2014).
35 Theilen, N. T., Kunkel, G. H. & Tyagi, S. C. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy. J Cell Physiol 232, 2348-2358, doi:10.1002/jcp.25737 (2017).
36 Sebastian, D. et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci U S A 109, 5523-5528, doi:10.1073/pnas.1108220109 (2012).
37 Johannsen, D. L. et al. Effect of short-term thyroxine administration on energy metabolism and mitochondrial efficiency in humans. PLoS One 7, e40837, doi:10.1371/journal.pone.0040837 (2012).