1 Nel, H. J., Malmström, V., Wraith, D. C. & Thomas, R. Autoantigens in rheumatoid arthritis and the potential for antigen-specific tolerising immunotherapy. The Lancet Rheumatology 2, e712-e723 (2020).
2 Rims, C. et al. Citrullinated aggrecan epitopes as targets of autoreactive CD 4+ T cells in patients with rheumatoid arthritis. Arthritis & Rheumatology 71, 518-528 (2019).
3 James, E. A. et al. Citrulline‐specific Th1 cells are increased in rheumatoid arthritis and their frequency is influenced by disease duration and therapy. Arthritis & rheumatology 66, 1712-1722 (2014).
4 Gerstner, C. et al. Functional and structural characterization of a novel HLA-DRB1* 04: 01-restricted α-enolase T cell epitope in rheumatoid arthritis. Frontiers in immunology 7, 494 (2016).
5 Song, J. et al. Shared recognition of citrullinated tenascin-C peptides by T and B cells in rheumatoid arthritis. JCI insight 6 (2021).
6 Midwood, K. et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nature medicine 15, 774-780 (2009).
7 Schwenzer, A. et al. Identification of an immunodominant peptide from citrullinated tenascin-C as a major target for autoantibodies in rheumatoid arthritis. Annals of the rheumatic diseases 75, 1876-1883 (2016).
8 Risnes, L. F. et al. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. The Journal of clinical investigation 128, 2642-2650 (2018).
9 Han, A., Glanville, J., Hansmann, L. & Davis, M. M. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nature biotechnology 32, 684-692 (2014).
10 Boddul, S. V. et al. In vitro and ex vitro functional characterization of human HLA-DRB1∗ 04 restricted T cell receptors. Journal of translational autoimmunity 4, 100087 (2021).
11 Lim, J. J. et al. The shared susceptibility epitope of HLA-DR4 binds citrullinated self-antigens and the TCR. Science Immunology 6 (2021).
12 Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nature genetics 44, 291-296 (2012).
13 Aletaha, D. et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis & rheumatism 62, 2569-2581 (2010).
14 Feitsma, A. L. et al. Identification of citrullinated vimentin peptides as T cell epitopes in HLA–DR4–positive patients with rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology 62, 117-125 (2010).
15 Auger, I. et al. Peptidylarginine Deiminase Autoimmunity and the Development of Anti–Citrullinated Protein Antibody in Rheumatoid Arthritis: The Hapten–Carrier Model. Arthritis & Rheumatology 72, 903-911 (2020).
16 Gerstner, C. et al. Multi-HLA class II tetramer analyses of citrulline-reactive T cells and early treatment response in rheumatoid arthritis. BMC immunology 21, 1-14 (2020).
17 Hasegawa, M. et al. Expression of large tenascin‐C splice variants in synovial fluid of patients with rheumatoid arthritis. Journal of orthopaedic research 25, 563-568 (2007).
18 Page, T. H. et al. Raised circulating tenascin-C in rheumatoid arthritis. Arthritis research & therapy 14, 1-9 (2012).
19 Mitchell, A. M. et al. T-cell responses to hybrid insulin peptides prior to type 1 diabetes development. Proceedings of the National Academy of Sciences 118 (2021).
20 Wolf, D. et al. Pathogenic Autoimmunity in Atherosclerosis Evolves From Initially Protective Apolipoprotein B100–Reactive CD4+ T-Regulatory Cells. Circulation 142, 1279-1293 (2020).
21 Abdirama, D. et al. Nuclear antigen–reactive CD4+ T cells expand in active systemic lupus erythematosus, produce effector cytokines, and invade the kidneys. Kidney International 99, 238-246 (2021).
22 Arlehamn, C. S. L. et al. α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nature communications 11, 1-11 (2020).
23 Buitinga, M. et al. Inflammation-induced citrullinated glucose-regulated protein 78 elicits immune responses in human type 1 diabetes. Diabetes 67, 2337-2348 (2018).
24 Yao, Y. et al. T cell receptor repertoire as a potential diagnostic marker for celiac disease. Clinical Immunology 222, 108621 (2021).
25 Tran, M. T. et al. T cell receptor recognition of hybrid insulin peptides bound to HLA-DQ8. Nature Communications 12, 1-13 (2021).
26 Frick, R. et al. A TRAV26‐1‐encoded recognition motif focuses the biased T cell response in celiac disease. European journal of immunology 50, 142-145 (2020).
27 Dash, P. et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547, 89-93 (2017).