1 Building a Synthetic Cell, https://www.basyc.nl; The Synthetic Cell Initiative, https://www.syntheticcell.eu/about-the-initiative/; Build-A-Cell, https://www.buildacell.org.
2 van Stevendaal, M. H. M. E., van Hest, J. C. M. & Mason, A. F. Functional Interactions Between Bottom-Up Synthetic Cells and Living Matter for Biomedical Applications. ChemSystemsChem 3, e2100009, (2021).
3 Jeong, S., Nguyen, H. T., Kim, C. H., Ly, M. N. & Shin, K. Toward Artificial Cells: Novel Advances in Energy Conversion and Cellular Motility. Advanced Functional Materials 30, 1907182, (2020).
4 Toparlak, O. D. & Mansy, S. S. Progress in synthesizing protocells. Experimental Biology and Medicine 244, 304-313, (2018).
5 Yewdall, N. A., Mason, A. F. & van Hest, J. C. M. The hallmarks of living systems: towards creating artificial cells. Interface Focus 8, 20180023, (2018).
6 Adamala, K. P., Martin-Alarcon, D. A., Guthrie-Honea, K. R. & Boyden, E. S. Engineering genetic circuit interactions within and between synthetic minimal cells. Nature Chemistry 9, 431-439, (2017).
7 Deng, N.-N., Yelleswarapu, M., Zheng, L. & Huck, W. T. S. Microfluidic Assembly of Monodisperse Vesosomes as Artificial Cell Models. Journal of the American Chemical Society 139, 587-590, (2017).
8 Weiss, M. et al. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nature Materials 17, 89-96, (2018).
9 Huang, X. et al. Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells. Nature Communications 4, 2239, (2013).
10 Li, M., Harbron, R. L., Weaver, J. V. M., Binks, B. P. & Mann, S. Electrostatically gated membrane permeability in inorganic protocells. Nature Chemistry 5, 529-536, (2013).
11 Marguet, M., Bonduelle, C. & Lecommandoux, S. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chemical Society Reviews 42, 512-529, (2013).
12 Niederholtmeyer, H., Chaggan, C. & Devaraj, N. K. Communication and quorum sensing in non-living mimics of eukaryotic cells. Nature Communications 9, 5027, (2018).
13 Kumar, B. V. V. S. P., Patil, A. J. & Mann, S. Enzyme-powered motility in buoyant organoclay/DNA protocells. Nature Chemistry 10, 1154-1163, (2018).
14 Mukwaya, V. et al. Lectin-Glycan-Mediated Nanoparticle Docking as a Step toward Programmable Membrane Catalysis and Adhesion in Synthetic Protocells. ACS Nano 14, 7899-7910, (2020).
15 Dou, H. et al. Higher-order assembly of crystalline cylindrical micelles into membrane-extendable colloidosomes. Nature Communications 8, 426, (2017).
16 Martin, N. Dynamic Synthetic Cells Based on Liquid–Liquid Phase Separation. ChemBioChem 20, 2553-2568, (2019).
17 Zhang, Y. et al. Giant Coacervate Vesicles As an Integrated Approach to Cytomimetic Modeling. Journal of the American Chemical Society 143, 2866-2874, (2021).
18 Tang, T.-Y.D. et al. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nature Chemistry 6, 527-533, (2014).
19 Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nature Chemistry 3, 720-724, (2011).
20 Tang, T.-Y.D., van Swaay, D., deMello, A., Ross Anderson, J. L. & Mann, S. In vitro gene expression within membrane-free coacervate protocells. Chemical Communications 51, 11429-11432, (2015).
21 Li, M., Green, D. C., Anderson, J. L. R., Binks, B. P. & Mann, S. In vitro gene expression and enzyme catalysis in bio-inorganic protocells. Chemical Science 2, 1739-1745, (2011).
22 Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F. & Walde, P. Enzymatic reactions in confined environments. Nature Nanotechnology 11, 409-420, (2016).
23 Strulson, C. A., Molden, R. C., Keating, C. D. & Bevilacqua, P. C. RNA catalysis through compartmentalization. Nature Chemistry 4, 941-946, (2012).
24 Drobot, B. et al. Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nature Communications 9, 3643, (2018).
25 Faust, J. E., Yang, P.-Y. & Huang, H. W. Action of Antimicrobial Peptides on Bacterial and Lipid Membranes: A Direct Comparison. Biophysical Journal 112, 1663-1672, (2017).
26 Gray, L. R., Tompkins, S. C. & Taylor, E. B. Regulation of pyruvate metabolism and human disease. Cellular and Molecular Life Sciences 71, 2577-2604, (2014).
27 Silverman, A. D., Karim, A. S. & Jewett, M. C. Cell-free gene expression: an expanded repertoire of applications. Nature Reviews Genetics 21, 151-170, (2020).
28 Fung, B. M. & Eyob, E. The effect of ATP concentration on the rate of actin polymerization. Archives of Biochemistry and Biophysics 220, 370-378, (1983).
29 Nakashima, K. K., Baaij, J. F. & Spruijt, E. Reversible generation of coacervate droplets in an enzymatic network. Soft Matter 14, 361-367, (2018).
30 Alvarez, C. L. et al. Dynamic regulation of extracellular ATP in Escherichia coli. Biochemical Journal 474, 1395-1416, (2017).