1 Ryoo, R. Birth of a class of nanomaterial. Nature. 575, 40-41 (2019).
2 Joo, S., Park, J., Tsung, C., Yamada, Y., Yang, P. & Somorjai, G. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat. Mater. 8, 126-131 (2009).
3 Parlett, C. M. et al. Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions. Nat. Mater. 15, 178-182 (2016).
4 Li, W., Liu, J. & Zhao, D. Y. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016).
5 Lan, K. et al. Precisely designed mesoscopic titania for high-volumetric-density pseudocapacitance. J. Am. Chem. Soc. doi.org/10.1021/jacs.1c03433 (2021)
6 Zu, L. et al. Mesoporous materials for electrochemical energy storage and conversion. Adv. Energy Mater. 10, 2002152 (2021).
7 Wang, C. et al. Molecular design strategy for ordered mesoporous stoichiometric metal oxide. Angew. Chem. Int. Ed. 58, 15863-15868 (2019).
8 Li, Z., Barnes, J., Bosoy, A., Stoddart, J. & Zink, J. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590-2605 (2012)
9 Chen, W., Glackin, C. A., Horwitz, M. A. & Zink, J. Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery. Acc. Chem. Res. 52, 1531-1542 (2019).
10 Chen, Y. & Shi, J. Chemistry of mesoporous organosilica in nanotechnology: molecularly organic-inorganic hybridization into frameworks. Adv. Mater. 28, 3235-3272 (2016).
11 Liu, J., Liu, T., Pan, J., Liu, S. & Lu, G. Advances in multicompartment mesoporous silica micro/nanoparticles for theranostic applications. Annu. Rev. Chem. Biomol. 9, 389-411 (2018).
12 Nguyen, T. L., Choi, Y. & Kim, J. Mesoporous silica as a versatile platform for cancer immunotherapy. Adv. Mater. 31, e1803953 (2019).
13 Qiu, P., Ma, B., Hung, C. T., Li, W. & Zhao, D. Spherical mesoporous materials from single to multilevel architectures. Acc. Chem. Res. 52, 2928-2938 (2019).
14 Zhao, T. C., Elzatahry, A., Li, X. M. & Zhao, D. Y. Single-micelle-directed synthesis of mesoporous materials. Nat. Rev. Mater. 4, 775-791 (2019).
15 Li, W., Yue, Q., Deng, Y. & Zhao, D. Ordered mesoporous materials based on interfacial assembly and engineering. Adv. Mater. 25, 5129-5152 (2013).
16 Zhao, T. C. et al. Interfacial assembly directed unique mesoporous architectures: from symmetric to asymmetric. Acc. Mater. Res. 1, 100-114 (2020).
17 Chen, C., Xie, L. & Wang, Y. Recent advances in the synthesis and applications of anisotropic carbon and silica-based nanoparticles. Nano Res. 12, 1267-1278 (2019).
18 Wu, Z. et al. Janus nanoarchitectures: from structural design to catalytic applications. Nano Today 22, 62-82 (2018).
19 Zhao, T. C. et al. Surface confined winding assembly of mesoporous nanorods. J. Am. Chem. Soc. 142, 20359-20367 (2020)
20 Li, X. et al. Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J. Am. Chem. Soc. 136, 15086-15092 (2014).
21 Zhao, T. et al. Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nat. Commun. 10, 4387 (2019).
22 Wang W. et al. Engine-trailer-structured nanotrucks for efficient nano-bio interactions and bioimaging-guided drug delivery. Chem 6, 1-16 (2020).
23 Li, X. et al. Degradation-restructuring induced anisotropic epitaxial growth for fabrication of asymmetric diblock and triblock mesoporous nanocomposites. Adv. Mater. 29, 1701652 (2017).
24 Yang, T. et al. Dumbbell-shaped bi-component mesoporous Janus solid nanoparticles for biphasic interface catalysis. Angew. Chem. Int. Ed. 56, 8459-8463 (2017).
25 Zhao, T. et al. Spatial isolation of carbon and silica in a single Janus mesoporous nanoparticle with tunable amphiphilicity. J. Am. Chem. Soc. 140, 10009-10015 (2018).
26 Zhang, P. H. et al. A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates. Nat. Chem. 12, 381-390 (2020).
27 Lucks, J. B., Qi, L., Mutalik, V. K., Wang, D. & Arkin, A. P. Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc. Natl. Acad. Sci. 108, 8617-8622 (2011).
28 Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585-1588 (2006).
29 Win, M. N. & Smolke, C. D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456-460 (2008).
30 Strack, G., Ornatska, M., Pita, M. & Katz, E. Biocomputing security system: concatenated enzyme-based logic gates operating as a biomolecular keypad lock. J. Am. Chem. Soc. 130, 4234-4235 (2008).
31 Ikeda, M. et al. Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel–enzyme hybrids. Nat. Chem. 6, 511-518 (2014).
32 Wen, J. et al. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem. Soc. Rev. 46, 6024-6045 (2017).
33 Park, J. S. et al. Disparate downstream reactions mediated by an ionically controlled supramolecular tristate switch. J. Am. Chem. Soc. 140, 7598-7604 (2018).
34 Karimi, M. et al. Smart nanostructures for cargo delivery: uncaging and activating by light. J. Am. Chem. Soc. 139, 4584-4610 (2017).
35 Seo J. et al. Nano-bio-computing lipid nanotablet. Sci. Adv. 5, eaau2124 (2019).
36 Nenenson Y. Biomolecular computing systems: principles, progress and potential. Nat. Rev. Genetics 13, 455-468 (2012).
37 Lius B. et al. Engineering chemical communication between micro/nanosystems. Chem. Soc. Rev. 16, 8829-8856 (2021).
38 Chen, C. et al. Bioinspired chemical communication between synthetic nanomotors. Angew. Chem. Int. Ed. 57, 241-245 (2018).
39 Llopis-Lorente, A. et al. Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nat. Commun. 8, 15511 (2017).
40 Diez, P. et al. Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J. Am. Chem. Soc. 136, 9116-9123 (2014).
41 Shen, D. et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 14, 923-932 (2014).
42 Niu, D., Ma, Z., Li, Y. & Shi, J. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J. Am. Chem. Soc. 132, 15144-15147 (2010).
43 Wei, J., Yue, Q., Sun, Z., Deng, Y. & Zhao, D. Synthesis of dual-mesoporous silica using non-ionic diblock copolymer and cationic surfactant as co-templates. Angew. Chem. Int. Ed. 51, 6149-6153 (2012).
44 Guan, B. Y., Zhang, S. L. & Lou, X. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 57, 6176-6180 (2018).
45 Chen, G. et al. General formation of macro-/mesoporous nanoshells from interfacial assembly of irregular mesostructured nanounits. Angew. Chem. Int. Ed. 59, 19663-19668 (2020).
46 Peng, L. et al. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 141, 7073-7080 (2019).
47 Vallet-Regi, M., Rámila, A., del Real, R. P. & Pérez-Pariente, J. A new property of MCM-41: drug delivery system. Chem. Mater. 13, 308-311 (2001).
48 Liu, Q., Yu, B., Ye, W. & Zhou, F. Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules. Macromol. Biosci. 11, 1227-1234 (2011).
49 Yu, B., Liu, J., Liu, S. & Zhou, F. Pdop layer exhibiting zwitterionicity: a simple electrochemical interface for governing ion permeability. Chem. Commun. 46, 5900-5902 (2010).
50 Huo, M., Wang, L., Chen, Y. & Shi, J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8, 357 (2017).
51 Du, L., Liao, S., Khatib, H. A., Stoddart, J. F. & Zink, J. I. Controlled-access hollow mechanized silica nanocontainers. J. Am. Chem. Soc. 131, 15136-15142 (2009).
52 Coll, C., Bernardos, A., Martinez-Manez, R. & Sancenon, F. Gated silica mesoporous supports for controlled release and signaling applications. Acc. Chem. Res. 46, 339-349 (2013).