1 Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine (2020).
2 Lai, C.-C., Ko, W.-C., Lee, P.-I., Jean, S.-S. & Hsueh, P.-R. Extra-respiratory manifestations of COVID-19. International Journal of Antimicrobial Agents, 106024 (2020).
3 Gupta, A. et al. Extrapulmonary manifestations of COVID-19. Nat Med 26, 1017-1032, doi:10.1038/s41591-020-0968-3 (2020).
4 Wichmann, D. et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann Intern Med, doi:10.7326/M20-2003 (2020).
5 Xiao, F. et al. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 158, 1831-1833 e1833, doi:10.1053/j.gastro.2020.02.055 (2020).
6 Puelles, V. G. et al. Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med, doi:10.1056/NEJMc2011400 (2020).
7 Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. bioRxiv (2020).
8 Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell (2020).
9 Liu, F. et al. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol, doi:10.1016/j.cgh.2020.04.040 (2020).
10 Yang, J. K., Lin, S. S., Ji, X. J. & Guo, L. M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 47, 193-199, doi:10.1007/s00592-009-0109-4 (2010).
11 Fignani, D. et al. SARS-CoV-2 receptor Angiotensin I-Converting Enzyme type 2 is expressed in human pancreatic islet β-cells and is upregulated by inflammatory stress. bioRxiv (2020).
12 Zhu, L. et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell metabolism (2020).
13 Williamson, E. J. et al. OpenSAFELY: factors associated with COVID-19 death in 17 million patients. Nature, doi:10.1038/s41586-020-2521-4 (2020).
14 Pan, L. et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. The American journal of gastroenterology 115 (2020).
15 Wang, F. et al. Pancreatic Injury Patterns in Patients With Coronavirus Disease 19 Pneumonia. Gastroenterology, doi:10.1053/j.gastro.2020.03.055 (2020).
16 Rubino, F. et al. New-Onset Diabetes in Covid-19. N Engl J Med, doi:10.1056/NEJMc2018688 (2020).
17 Hollstein, T. et al. Autoantibody-negative insulin-dependent diabetes mellitus after SARS-CoV-2 infection: a case report. Nature Metabolism, doi:10.1038/s42255-020-00281-8 (2020).
18 Yang, L. et al. A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell (2020).
19 Lee, J. J. et al. Relative Abundance of SARS-CoV-2 Entry Genes in the Enterocytes of the Lower Gastrointestinal Tract. Genes (Basel) 11, doi:10.3390/genes11060645 (2020).
20 Coate, K. C. et al. SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 are Expressed in the Pancreas but Not in Islet Endocrine Cells. bioRxiv (2020).
21 Kusmartseva, I. et al. ACE2 and SARS-CoV-2 Expression in the Normal and COVID-19 Pancreas. bioRxiv (2020).
22 Hikmet, F. et al. The protein expression profile of ACE2 in human tissues. Mol Syst Biol 16, e9610, doi:10.15252/msb.20209610 (2020).
23 Beigel, J. H. et al. Remdesivir for the Treatment of Covid-19 - Preliminary Report. N Engl J Med, doi:10.1056/NEJMoa2007764 (2020).
24 Nicin, L. et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J 41, 1804-1806, doi:10.1093/eurheartj/ehaa311 (2020).
25 Chen, Y. et al. Rhesus angiotensin converting enzyme 2 supports entry of severe acute respiratory syndrome coronavirus in Chinese macaques. Virology 381, 89-97, doi:10.1016/j.virol.2008.08.016 (2008).
26 Marques, F. Z. et al. Molecular characterization of renin-angiotensin system components in human intrauterine tissues and fetal membranes from vaginal delivery and cesarean section. Placenta 32, 214-221, doi:10.1016/j.placenta.2010.12.006 (2011).
27 Smits, S. L. et al. Distinct severe acute respiratory syndrome coronavirus-induced acute lung injury pathways in two different nonhuman primate species. J Virol 85, 4234-4245, doi:10.1128/JVI.02395-10 (2011).
28 Esumi, M. et al. Transmembrane serine protease TMPRSS2 activates hepatitis C virus infection. Hepatology 61, 437-446, doi:10.1002/hep.27426 (2015).
29 Collin, J. et al. Co-expression of SARS-CoV-2 entry genes in the superficial adult human conjunctival, limbal and corneal epithelium suggests an additional route of entry via the ocular surface. Ocul Surf, doi:10.1016/j.jtos.2020.05.013 (2020).
30 Ubuka, T., Moriya, S., Soga, T. & Parhar, I. Identification of Transmembrane Protease Serine 2 and Forkhead Box A1 As the Potential Bisphenol A Responsive Genes in the Neonatal Male Rat Brain. Front Endocrinol (Lausanne) 9, 139, doi:10.3389/fendo.2018.00139 (2018).
31 Zmora, P. et al. Non-human primate orthologues of TMPRSS2 cleave and activate the influenza virus hemagglutinin. PLoS One 12, e0176597, doi:10.1371/journal.pone.0176597 (2017).
32 Sakaguchi, W. et al. Existence of SARS-CoV-2 Entry Molecules in the Oral Cavity. Int J Mol Sci 21, doi:10.3390/ijms21176000 (2020).
33 Lucas, J. M. et al. The androgen-regulated type II serine protease TMPRSS2 is differentially expressed and mislocalized in prostate adenocarcinoma. J Pathol 215, 118-125, doi:10.1002/path.2330 (2008).
34 Leung, J. M. et al. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. Eur Respir J 55, doi:10.1183/13993003.00688-2020 (2020).
35 Holland, A. M., Hale, M. A., Kagami, H., Hammer, R. E. & MacDonald, R. J. Experimental control of pancreatic development and maintenance. Proc Natl Acad Sci U S A 99, 12236-12241, doi:10.1073/pnas.192255099 (2002).
36 Wu, K. L. et al. Hepatocyte nuclear factor 3beta is involved in pancreatic beta-cell-specific transcription of the pdx-1 gene. Mol Cell Biol 17, 6002-6013, doi:10.1128/mcb.17.10.6002 (1997).
37 Brahim Belhaouari, D. et al. The Strengths of Scanning Electron Microscopy in Deciphering SARS-CoV-2 Infectious Cycle. Frontiers in Microbiology 11, doi:10.3389/fmicb.2020.02014 (2020).
38 Zhu, N. et al. Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells. Nat Commun 11, 3910, doi:10.1038/s41467-020-17796-z (2020).
39 Lamers, M. M. et al. SARS-CoV-2 productively infects human gut enterocytes. Science (2020).
40 Semplici, F. et al. Human mutation within Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) causes basal insulin hypersecretion. J Biol Chem 286, 44005-44014, doi:10.1074/jbc.M111.254995 (2011).
41 Zhang, D. D. et al. Per-Arnt-Sim Kinase (PASK): An Emerging Regulator of Mammalian Glucose and Lipid Metabolism. Nutrients 7, 7437-7450, doi:10.3390/nu7095347 (2015).
42 Aljaibeji, H. et al. Reduced Expression of PLCXD3 Associates With Disruption of Glucose Sensing and Insulin Signaling in Pancreatic beta-Cells. Front Endocrinol (Lausanne) 10, 735, doi:10.3389/fendo.2019.00735 (2019).
43 Boonen, S. E. et al. Transient neonatal diabetes, ZFP57, and hypomethylation of multiple imprinted loci: a detailed follow-up. Diabetes Care 36, 505-512, doi:10.2337/dc12-0700 (2013).
44 Hoytema van Konijnenburg, E. M. M. et al. Hyperinsulinism in a patient with a Zellweger Spectrum Disorder and a 16p11.2 deletion syndrome. Mol Genet Metab Rep 23, 100590, doi:10.1016/j.ymgmr.2020.100590 (2020).
45 Huang, C. et al. Synaptotagmin 4 Regulates Pancreatic beta Cell Maturation by Modulating the Ca(2+) Sensitivity of Insulin Secretion Vesicles. Dev Cell 45, 347-361 e345, doi:10.1016/j.devcel.2018.03.013 (2018).
46 Aljaibeji, H. et al. Reduced Expression of PLCXD3 Associates With Disruption of Glucose Sensing and Insulin Signaling in Pancreatic β-Cells. Frontiers in Endocrinology 10, doi:10.3389/fendo.2019.00735 (2019).
47 Pae, E. K. & Kim, G. Insulin production hampered by intermittent hypoxia via impaired zinc homeostasis. PLoS One 9, e90192, doi:10.1371/journal.pone.0090192 (2014).
48 Ackermann, A. M., Wang, Z., Schug, J., Naji, A. & Kaestner, K. H. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol Metab 5, 233-244, doi:10.1016/j.molmet.2016.01.002 (2016).
49 Sander, M. et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 127, 5533-5540 (2000).
50 WHO. Classification of diabetes mellitus. World Health Organization, doi:https://www.who.int/publications/i/item/classification-of-diabetes-mellitus (2019).
51 De Beeck, A. O. & Eizirik, D. L. Viral infections in type 1 diabetes mellitus—why the β cells? Nature Reviews Endocrinology 12, 263-273 (2016).
52 Fairweather, D. & Rose, N. R. Type 1 diabetes: virus infection or autoimmune disease? Nature immunology 3, 338-340 (2002).
53 Ruiz, P. L. et al. Pandemic influenza and subsequent risk of type 1 diabetes: a nationwide cohort study. Diabetologia 61, 1996-2004 (2018).
54 Oshima, M. et al. Virus-like infection induces human beta cell dedifferentiation. JCI Insight 3, doi:10.1172/jci.insight.97732 (2018).
55 Petzold, A., Solimena, M. & Knoch, K. P. Mechanisms of Beta Cell Dysfunction Associated With Viral Infection. Curr Diab Rep 15, 73, doi:10.1007/s11892-015-0654-x (2015).
56 Hoffmann, M., Kleine-Weber, H. & Pöhlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Molecular Cell 78, 779-784.e775, doi:https://doi.org/10.1016/j.molcel.2020.04.022 (2020).
57 Millet, J. K. & Whittaker, G. R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Research 202, 120-134, doi:https://doi.org/10.1016/j.virusres.2014.11.021 (2015).
58 Krueger, J. et al. Remdesivir but not famotidine inhibits SARS-CoV-2 replication in human pluripotent stem cell-derived intestinal organoids. bioRxiv (2020).
59 Hodik, M. et al. Enterovirus infection of human islets of Langerhans affects beta-cell function resulting in disintegrated islets, decreased glucose stimulated insulin secretion and loss of Golgi structure. BMJ Open Diabetes Res Care 4, e000179, doi:10.1136/bmjdrc-2015-000179 (2016).
60 Sachs, S. et al. Targeted pharmacological therapy restores β-cell function for diabetes remission. Nature Metabolism 2, 192-209, doi:10.1038/s42255-020-0171-3 (2020).
61 Bozzo, C. P. et al. IFITM proteins promote SARS-CoV-2 infection of human lung cells. bioRxiv (2020).
62 Morris, K. V. The Improbability of the Rapid Development of a Vaccine for SARS-CoV-2. Molecular Therapy (2020).
63 Bermejo-Martin, J. F. et al. SARS-CoV-2 RNA viremia is associated with a sepsis-like host response and critical illness in COVID-19. medRxiv (2020).
64 Schepis, T. et al. SARS-CoV2 RNA detection in a pancreatic pseudocyst sample. Pancreatology 20, 1011-1012, doi:10.1016/j.pan.2020.05.016 (2020).