Yi, A.Y., Lu, W., Farson, D.F., Lee, L.J., 2008. Overview of polymer micro/nanomanufacturing for biomedical applications, Adv. Polym. Technol., 27, 188–198.
Tan, N.Y.J., Zhang, X., Neo, D.W.K., 2019. Ultra-precision diamond shaping of microchannels for microfluidic applications, In: 19th International conference of the European Society for Precision Engineering and Nanotechnology (euspen). Bilbao, Spain, 358–361.
Guo, J., Zhang, J., Wang, H., 2018. Surface quality characterisation of diamond cut V-groove structures made of rapidly solidified aluminium RSA-905, Precis. Eng, 53 120–133.
Otieno, T., Abou-El-Hossein. K., Hsu, W.Y., 2015. Surface roughness when diamond turning RSA 905 optical aluminium. In: Proc. SPIE, 957509.
Dornfield, D., Lee, D.E,.2008. Introduction to precision manufacturing. In: Dornfeld D, Lee D-E (eds) Precision Manufacturing, Springer US, Boston, MA, 1–33.
Sagapuram, D., Yeung, H., Guo, Y., Mahato, A., M’Saoubi, R., 2015. On control of flow instabilities in cutting of metals. CIRP Ann, 64 49–52.
Udupa, A., Viswanathan, K., Saei, M., Mann, J.B., Chandrasekar, S., 2018. Material-independent mechanochemical effect in the deformation of highly-strain-hardening metals. Physical Review Applied, 10, 014009.
Kramer, I.R., 1961. The effect of surface-active agents on the mechanical behavior of aluminum single crystals, Trans. AIME, 221, 989–993.
Roscoe, R., 1936, XXXII. The plastic deformation of cadmium single-crystals, London, Edinburgh, Dublin. Philos. Mag. J. Sci, 21, 399–406.
Rehbinder, P.A., 1928. On the effect of changes in the surface energy upon cleavage, hardness, and other crystal properties, In: The VI‐th Congress of Russian Physicists, Moscow, 29.
Shaw, M.C., 1958. On the action of metal cutting fluids at low speeds, Wear, 2, 217–227.
Zhang, J., Lee, Y.J., Wang, H., 2021. Mechanochemical effect on the microstructure and mechanical properties in ultraprecision machining of AA6061 alloy. Journal of materials science and technology, 69, 228-238.
Wang, X.F., Guo, M.X., Cao, L.Y., Luo, J.R., Zhang, J.S., 2015. Effect of heating rate on mechanical property, microstructure and texture evolution of Al-Mg-Si-Cu alloy during solution treatment, Mater. Sci. Eng. A 621, 8-17.
Peirs, J., Tirry, W., Amin-Ahmadi, B., 2013. Microstructure of adiabatic shear bands in Ti6Al4V, Mater. Charact., 75, 79–92.
Zhang, J., Ma, M., Shen, F., 2018. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables, Mater. Sci. Eng. A., 710, 27–37.
Zhang, J., Lee, Y.J., Wang, H., 2021. Microstructure evaluation of shear bands of microcutting chips in AA6061 alloy under the mechanochemical effect, Journal of materials science and technology, 91, 178–186.
Zhang, J., Lee, Y.J., Wang. H., 2020. Surface Texture Transformation in Micro-Cutting of AA6061-T6 with the Rehbinder Effect. Int. J. of Precis. Eng. and Manuf.-Green Tech.
Shen, F., Yi, D., Wang, B., 2016. Semi-quantitative evaluation of texture components and anisotropy of the yield strength in 2524 T3 alloy sheets, Mater. Sci. Eng. A., 675, 386–395.
Zhang, J., Wang, B., Yi, D., 2019. Stress corrosion cracking behavior in 2297 Al–Cu–Li alloy at different grain orientations, Mater. Sci. Eng. A., 764, 138252.
Roland, B., Marek, B., Helmi, A., Philippe, P., Gilles, L., 2016. Chip formation and microstructure evolution in the adiabatic shear band when machining titanium metal matrix composites, Int. J .Mach. Tools. Manuf., 109, 137-146.
Chang, G., Miao, L., 2014. Adiabatic shear band of TC4 alloy during warm compression, Rare. Met. Mater. Eng., 43, 2069–2074.
Yin, W.H., Xu, F., Ertorer, O., 2013. Mechanical behavior of microstructure engineered multi-length-scale titanium over a wide range of strain rates, Acta Mater., 61, 3781–3798.
Guo, Y., Ruan. Q., Zhu S., 2019. Temperature Rise Associated with Adiabatic Shear Band: Causality Clarified, Phys. Rev. Lett., 122, 15503.
Liu, D., He, Y., Tang, X., Ding, H., Hu, P., 2012. Size effects in the torsion of microscale copper wires: experiment and analysis, Scr. Mater. 66, 406–409.
Nye, J.F., 1953. Some geometrical relations in dislocated crystals, Acta Metall. 1, 153–162.
Kröner, E., Balian, R., 1981. Physics of Defects, North-Holland, Amsterdam, 219–315.
Pantleon, W., 2008. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction, Scr. Mater. 11, 994–997.
Zhang, J., Wang, B., Wang, H., 2020. Geometrically necessary dislocations distribution in face-centred cubic alloy with varied grain size, Mater. Charact., 162, 110205.