1 Chambers, D. C. et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult lung and heart-lung transplantation Report-2019; Focus theme: Donor and recipient size match. J Heart Lung Transplant38, 1042-1055, doi:10.1016/j.healun.2019.08.001 (2019).
2 Heidt, S., Hester, J., Shankar, S., Friend, P. J. & Wood, K. J. B cell repopulation after alemtuzumab induction-transient increase in transitional B cells and long-term dominance of naive B cells. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons12, 1784-1792, doi:10.1111/j.1600-6143.2012.04012.x (2012).
3 Morris, P. J. & Russell, N. K. Alemtuzumab (Campath-1H): a systematic review in organ transplantation. Transplantation81, 1361-1367, doi:10.1097/01.tp.0000219235.97036.9c (2006).
4 Jaksch, P. et al. Alemtuzumab in lung transplantation: an open-label, randomized, prospective single center study. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons14, 1839-1845, doi:10.1111/ajt.12824 (2014).
5 Shyu, S. et al. Five-year outcomes with alemtuzumab induction after lung transplantation. J Heart Lung Transplant30, 743-754, doi:10.1016/j.healun.2011.01.714 (2011).
6 Furuya, Y. et al. The Impact of Alemtuzumab and Basiliximab Induction on Patient Survival and Time to Bronchiolitis Obliterans Syndrome in Double Lung Transplantation Recipients. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons16, 2334-2341, doi:10.1111/ajt.13739 (2016).
7 Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281-297, doi:10.1016/s0092-8674(04)00045-5 (2004).
8 Zampetaki, A. & Mayr, M. MicroRNAs in vascular and metabolic disease. Circ Res110, 508-522, doi:10.1161/circresaha.111.247445 (2012).
9 Dai, R. & Ahmed, S. A. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res157, 163-179, doi:10.1016/j.trsl.2011.01.007 (2011).
10 O'Reilly, S. MicroRNAs in fibrosis: opportunities and challenges. Arthritis research & therapy18, 11, doi:10.1186/s13075-016-0929-x (2016).
11 Noris, M. et al. Regulatory T cells and T cell depletion: role of immunosuppressive drugs. J Am Soc Nephrol18, 1007-1018, doi:10.1681/asn.2006101143 (2007).
12 De Mercanti, S. et al.Alemtuzumab long-term immunologic effect: Treg suppressor function increases up to 24 months. Neurology(R) neuroimmunology & neuroinflammation3, e194, doi:10.1212/nxi.0000000000000194 (2016).
13 Cox, A. L. et al. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur J Immunol35, 3332-3342, doi:10.1002/eji.200535075 (2005).
14 Bouvy, A. P. et al. Alemtuzumab as Antirejection Therapy: T Cell Repopulation and Cytokine Responsiveness. Transplantation direct2, e83, doi:10.1097/txd.0000000000000595 (2016).
15 Bloom, D. D. et al. CD4+ CD25+ FOXP3+ regulatory T cells increase de novo in kidney transplant patients after immunodepletion with Campath-1H. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons8, 793-802, doi:10.1111/j.1600-6143.2007.02134.x (2008).
16 Zhang, X. et al. Differential reconstitution of T cell subsets following immunodepleting treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with relapsing-remitting multiple sclerosis. J Immunol191, 5867-5874, doi:10.4049/jimmunol.1301926 (2013).
17 Newell, K. A. et al. Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest120, 1836-1847, doi:10.1172/jci39933 (2010).
18 Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science316, 608-611, doi:10.1126/science.1139253 (2007).
19 Vigorito, E. et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity27, 847-859, doi:10.1016/j.immuni.2007.10.009 (2007).
20 Calame, K. MicroRNA-155 function in B Cells. Immunity27, 825-827, doi:10.1016/j.immuni.2007.11.010 (2007).
21 Monticelli, S. et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol6, R71, doi:10.1186/gb-2005-6-8-r71 (2005).
22 Karrich, J. J. et al.MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells. Blood122, 3001-3009, doi:10.1182/blood-2012-12-475087 (2013).
23 Schneider, P. et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med189, 1747-1756, doi:10.1084/jem.189.11.1747 (1999).
24 Day, E. S. et al. Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA. Biochemistry44, 1919-1931, doi:10.1021/bi048227k (2005).
25 Xu, H., He, X. & Xu, R. B Cell Activating Factor, Renal Allograft Antibody-Mediated Rejection, and Long-Term Outcome. J Immunol Res2018, 5251801, doi:10.1155/2018/5251801 (2018).
26 Ng, L. G. et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J Immunol173, 807-817, doi:10.4049/jimmunol.173.2.807 (2004).
27 Martinez-Gallo, M. et al. TACI mutations and impaired B-cell function in subjects with CVID and healthy heterozygotes. The Journal of allergy and clinical immunology131, 468-476, doi:10.1016/j.jaci.2012.10.029 (2013).
28 Peperzak, V. et al. Mcl-1 is essential for the survival of plasma cells. Nat Immunol14, 290-297, doi:10.1038/ni.2527 (2013).
29 Naradikian, M. S., Perate, A. R. & Cancro, M. P. BAFF receptors and ligands create independent homeostatic niches for B cell subsets. Curr Opin Immunol34, 126-129, doi:10.1016/j.coi.2015.03.005 (2015).
30 Ding, B. B., Bi, E., Chen, H., Yu, J. J. & Ye, B. H. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J Immunol190, 1827-1836, doi:10.4049/jimmunol.1201678 (2013).
31 Hillion, S., Dueymes, M., Youinou, P. & Jamin, C. IL-6 contributes to the expression of RAGs in human mature B cells. J Immunol179, 6790-6798, doi:10.4049/jimmunol.179.10.6790 (2007).
32 Bloom, D. et al. BAFF is increased in renal transplant patients following treatment with alemtuzumab. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons9, 1835-1845, doi:10.1111/j.1600-6143.2009.02710.x (2009).
33 Alivernini, S. et al. MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis. Nat Commun7, 12970, doi:10.1038/ncomms12970 (2016).
34 Fan, W. et al. Identification of microRNA-31 as a novel regulator contributing to impaired interleukin-2 production in T cells from patients with systemic lupus erythematosus. Arthritis Rheum64, 3715-3725, doi:10.1002/art.34596 (2012).
35 van der Heide, V., Möhnle, P., Rink, J., Briegel, J. & Kreth, S. Down-regulation of MicroRNA-31 in CD4+ T Cells Contributes to Immunosuppression in Human Sepsis by Promoting TH2 Skewing. Anesthesiology124, 908-922, doi:10.1097/aln.0000000000001031 (2016).
36 Shi, T. et al. The signaling axis of microRNA-31/interleukin-25 regulates Th1/Th17-mediated inflammation response in colitis. Mucosal Immunol10, 983-995, doi:10.1038/mi.2016.102 (2017).
37 Yang, L. et al. miR-146a controls the resolution of T cell responses in mice. J Exp Med209, 1655-1670, doi:10.1084/jem.20112218 (2012).
38 Lu, L. F. et al.Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell142, 914-929, doi:10.1016/j.cell.2010.08.012 (2010).
39 Cobb, B. S. et al. A role for Dicer in immune regulation. J Exp Med203, 2519-2527, doi:10.1084/jem.20061692 (2006).
40 Zheng, Y. et al.Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature445, 936-940, doi:10.1038/nature05563 (2007).
41 Lu, L. F. et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity30, 80-91, doi:10.1016/j.immuni.2008.11.010 (2009).
42 Rouas, R. et al. Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur J Immunol39, 1608-1618, doi:10.1002/eji.200838509 (2009).
43 Cho, S. et al. miR-23∼27∼24 clusters control effector T cell differentiation and function. J Exp Med213, 235-249, doi:10.1084/jem.20150990 (2016).
44 Hintzen, R. Q. et al.A soluble form of the human T cell differentiation antigen CD27 is released after triggering of the TCR/CD3 complex. J Immunol147, 29-35 (1991).
45 Jeannin, P. et al. Soluble CD86 is a costimulatory molecule for human T lymphocytes. Immunity13, 303-312, doi:10.1016/s1074-7613(00)00030-3 (2000).
46 Wong, C. K., Lit, L. C., Tam, L. S., Li, E. K. & Lam, C. W. Aberrant production of soluble costimulatory molecules CTLA-4, CD28, CD80 and CD86 in patients with systemic lupus erythematosus. Rheumatology (Oxford)44, 989-994, doi:10.1093/rheumatology/keh663 (2005).
47 Ip, W. K., Wong, C. K., Leung, T. F. & Lam, C. W. Elevation of plasma soluble T cell costimulatory molecules CTLA-4, CD28 and CD80 in children with allergic asthma. Int Arch Allergy Immunol137, 45-52, doi:10.1159/000084612 (2005).
48 Hock, B. D. et al.Human plasma contains a soluble form of CD86 which is present at elevated levels in some leukaemia patients. Leukemia16, 865-873, doi:10.1038/sj.leu.2402466 (2002).
49 Melendreras, S. G. et al. Soluble co-signaling molecules predict long-term graft outcome in kidney-transplanted patients. PLoS One9, e113396, doi:10.1371/journal.pone.0113396 (2014).
50 Wu, Y. L., Liang, J., Zhang, W., Tanaka, Y. & Sugiyama, H. Immunotherapies: the blockade of inhibitory signals. Int J Biol Sci8, 1420-1430, doi:10.7150/ijbs.5273 (2012).
51 Meyer, K. C. et al. An international ISHLT/ATS/ERS clinical practice guideline: diagnosis and management of bronchiolitis obliterans syndrome. Eur Respir J44, 1479-1503, doi:10.1183/09031936.00107514 (2014).