1 Yang, P. & Wang, X. COVID-19: a new challenge for human beings. Cell. Mol. Immunol. 17, 555-557 (2020).
2 Khuroo, M. S., Khuroo, M., Khuroo, M. S., Sofi, A. A. & Khuroo, N. S. COVID-19 vaccines: A race against time in the middle of death and devastation! J. Clin. Exp. Hepatol. (2020).
3 Abd El-Aziz, T. M. & Stockand, J. D. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2)-an update on the status. Infect Genet Evol, 104327 (2020).
4 Datta, P. K., Liu, F., Fischer, T., Rappaport, J. & Qin, X. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics 10, 7448 (2020).
5 Wu, Y. et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 368, 1274-1278 (2020).
6 Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell (2020).
7 Caly, L., Druce, J. D., Catton, M. G., Jans, D. A. & Wagstaff, K. M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 104787 (2020).
8 Wang, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet (2020).
9 Guaraldi, G. et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. (2020).
10 Roudsari, P. P. et al. Auxiliary role of mesenchymal stem cells as regenerative medicine soldiers to attenuate inflammatory processes of severe acute respiratory infections caused by COVID-19. Cell Tissue Bank. 1-21 (2020).
11 Tobaiqy, M. et al. Therapeutic Management of COVID-19 Patients: A systematic review. Infect. Prev. Pract. 100061 (2020).
12 Berkhout, B. RNAi-mediated antiviral immunity in mammals. Curr. Opin. Virol. 32, 9-14 (2018).
13 Schoggins, J. W. Interferon-stimulated genes: roles in viral pathogenesis. C Curr. Opin. Virol. 6, 40-46 (2014).
14 Echebli, N. et al. Stage-specific IFN-induced and IFN gene expression reveal convergence of type I and type II IFN and highlight their role in both acute and chronic stage of pathogenic SIV infection. PLoS One 13, e0190334 (2018).
15 Schuster, S., Miesen, P. & van Rij, R. P. Antiviral RNAi in insects and mammals: parallels and differences. Viruses 11, 448 (2019).
16 Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).
17 Ye, Q., Wang, B. & Mao, J. The pathogenesis and treatment of theCytokine Storm'in COVID-19. J Infect. 80, 607-613 (2020).
18 Maillard, P. V., Van der Veen, A. G., Poirier, E. Z. & Reis e Sousa, C. Slicing and dicing viruses: antiviral RNA interference in mammals. EMBO J. 38, e100941 (2019).
19 Zhanel, G., Ennis, K. & Vercaigne, L. A critical review of the fluoroquinolones: Focus on respiratory tract infections (vol 62, pg 13, 2002). Drugs 62, 944-944 (2002).
20 Zhanel, G. G. et al. The new fluoroquinolones: a critical review. Can. J. Infect. Dis. 10 (1999).
21 Siddiqui, S. et al. Simian Virus 40 Large T Antigen as a Model to Test the Efficacy of Flouroquinolones against Viral Helicases. Bioinformation 14, 75 (2018).
22 Dalhoff, A. Immunomodulatory activities of fluoroquinolones. Infection 33, 55-70 (2005).
23 Zhang, Q., Zhang, C. & Xi, Z. Enhancement of RNAi by a small molecule antibiotic enoxacin. Cell Res. 18, 1077-1079 (2008).
24 Hammond, S. M., Caudy, A. A. & Hannon, G. J. Post-transcriptional gene silencing by double-stranded RNA. Nat. Rev. Genet. 2, 110-119 (2001).
25 Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642-655 (2009).
26 Moradi, S. et al. 10th Royan Institute's International Summer School on "Molecular Biomedicine: From Diagnostics to Therapeutics". BioEssays, e2000042, doi:10.1002/bies.202000042 (2020).
27 Shahriari, F. et al. MicroRNA profiling reveals important functions of miR-125b and let-7a during human retinal pigment epithelial cell differentiation. Exp. Eye Res. 190, 107883, doi:10.1016/j.exer.2019.107883 (2019).
28 Moradi, S. et al. Small RNA Sequencing Reveals Dlk1-Dio3 Locus-Embedded MicroRNAs as Major Drivers of Ground-State Pluripotency. Stem Cell Rep. 9, 2081-2096, doi:10.1016/j.stemcr.2017.10.009 (2017).
29 Gross, N., Kropp, J. & Khatib, H. MicroRNA Signaling in Embryo Development. Biology 6, doi:10.3390/biology6030034 (2017).
30 Cui, L. et al. The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells. J. Virol. 89, 9029-9043 (2015).
31 Csorba, T., Kontra, L. & Burgyán, J. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479, 85-103 (2015).
32 Fareh, M. et al. TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat. Commun. 7, 1-11 (2016).
33 Shan, G. et al. A small molecule enhances RNA interference and promotes microRNA processing. Nat. Biotechnol. 26, 933-940 (2008).
34 Sousa, E. J. et al. Enoxacin inhibits growth of prostate cancer cells and effectively restores microRNA processing. Epigenetics 8, 548-558 (2013).
35 Valianatos, G. et al. A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein. PLoS One 12, e0185801 (2017).
36 Xu, Y.-P. et al. Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Res. 29, 265-273 (2019).
37 Scroggs, S. L. et al. Old drugs with new tricks: Efficacy of fluoroquinolones to suppress replication of flaviviruses. bioRxiv (2020).
38 Scroggs, S. L. et al. Evolution of resistance to fluoroquinolones by dengue virus serotype 4 provides insight into mechanism of action and consequences for viral fitness. bioRxiv (2020).
39 Shah, P. S., Pham, N. P. & Schaffer, D. V. HIV develops indirect cross-resistance to combinatorial RNAi targeting two distinct and spatially distant sites. Mol. Ther. 20, 840-848 (2012).
40 Liu, X., He, S., Skogerbø, G., Gong, F. & Chen, R. Integrated sequence-structure motifs suffice to identify microRNA precursors. PLoS one 7, e32797 (2012).
41 Tav, C., Tempel, S., Poligny, L. & Tahi, F. miRNAFold: a web server for fast miRNA precursor prediction in genomes. Nucleic Acids Res. 44, W181-W184 (2016).
42 Demirci, M. D. S. & Adan, A. Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection. PeerJ 8, e9369 (2020).
43 Liu, Z. et al. Implications of the virus-encoded miRNA and host miRNA in the pathogenicity of SARS-CoV-2. arXiv preprint arXiv:2004.04874 (2020).
44 Sardar, R., Satish, D., Birla, S. & Gupta, D. Comparative analyses of SAR-CoV2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially consequential to host-virus interaction and pathogenesis. bioRxiv (2020).
45 Tang, Y. et al. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front. Immunol. 11, 1708 (2020).
46 Tahamtan, A., Teymoori-Rad, M., Nakstad, B. & Salimi, V. Anti-inflammatory microRNAs and their potential for inflammatory diseases treatment. Front. Immunol. 9, 1377 (2018).
47 Botta, C. et al. Immunomodulatory activity of microRNAs: potential implications for multiple myeloma treatment. Curr. Cancer Drug Targets 17, 819-838 (2017).
48 Wang, Y. et al. Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: a longitudinal study. Radiology, 200843 (2020).
49 Salwig, I. et al. Bronchioalveolar stem cells are a main source for regeneration of distal lung epithelia in vivo. EMBO J. 38, e102099 (2019).
50 Mallick, B., Ghosh, Z. & Chakrabarti, J. MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells. PLoS one 4, e7837 (2009).
51 Khan, Z., Karataş, Y., Ceylan, A. F. & Rahman, H. COVID-19 and therapeutic drugs repurposing in hand: the need for collaborative efforts. Pharm. Hosp. et Clin. (2020).
52 Richter, S., Parolin, C., Palumbo, M. & Palù, G. Antiviral properties of quinolone-based drugs. Curr. Drug Targets-Infect. Disord. 4, 111-116 (2004).
53 Mottola, C. et al. In vitro antiviral activity of fluoroquinolones against African swine fever virus. Vet. Microbiol. 165, 86-94 (2013).
54 Lee, K.-M., Gong, Y.-N. & Shih, S.-R. Methods for detection and study of virus-derived small RNAs produced from the intramolecular base-pairing region of the picornavirus genome. Methods (2019).
55 Sabin, L. R. et al. Dicer-2 processes diverse viral RNA species. PLoS One 8, e55458 (2013).
56 Kannan, S., Ali, P. S. S., Sheeza, A. & Hemalatha, K. COVID-19 (Novel Coronavirus 2019)-recent trends. Eur. Rev. Med. Pharmacol. Sci. 24, 2006-2011 (2020).
57 Chow, J. T.-S. & Salmena, L. Prediction and Analysis of SARS-CoV-2-Targeting microRNA in Human Lung Epithelium. Genes (2020).
58 Wicik, Z. et al. ACE2 interaction networks in COVID-19: a physiological framework for prediction of outcome in patients with cardiovascular risk factors. BioRxiv (2020).
59 Nersisyan, S., Shkurnikov, M., Turchinovich, A., Knyazev, E. & Tonevitsky, A. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2. PLos One 15, e0235987 (2020).
60 Feng, J. et al. miR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: potential role in cerebrovascular disease. Lipids Health Dis. 13, 1-9 (2014).
61 Sun, Y. et al. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Res. 23, 1270-1283 (2013).
62 Zheng, C., Shu, Y., Luo, Y. & Luo, J. The role of miR-146a in modulating TRAF6-induced inflammation during lupus nephritis. Eur. Rev. Med. Pharmacol. Sci. 21, 1041-1048 (2017).
63 Yuan, K. et al. Fine-tuning the expression of microRNA-155 controls acetaminophen-induced liver inflammation. Int. Immunopharmacol. 40, 339-346 (2016).
64 Hutchison, E. R. et al. Evidence for miR‐181 involvement in neuroinflammatory responses of astrocytes. Glia 61, 1018-1028 (2013).
65 Park, M. D. Macrophages: a Trojan horse in COVID-19?, Nat. Rev. Immunol. (2020).
66 Magro, G. SARS-CoV-2 and COVID-19: is interleukin-6 (IL-6) the'culprit lesion'of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine: X, 100029 (2020).
67 Liu, Q. et al. Lung regeneration by multipotent stem cells residing at the bronchioalveolar-duct junction. Nat. Genet. 51, 728-738 (2019).
68 Dis, L. I. Correction to Lancet Infect Dis 2019. Lancet Infect. Dis. 19, 903-912 (2019).
69 Xia, S., Tao, Y., Cui, L., Yu, Y. & Xu, S. MHC Class I Molecules Exacerbate Viral Infection by Disrupting Type I Interferon Signaling. J. Immunol. Res. 2019 (2019).
70 Chen, W. A potential treatment of COVID-19 with TGF-β blockade. Int. J. Biol. Sci. 16, 1954 (2020).
71 Ramaiah, M. J. mTOR inhibition and p53 activation, microRNAs: The possible therapy against pandemic COVID-19. Gene Rep. 100765 (2020).
72 Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 1-13 (2020).
73 Zhou, Y. et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 6, 1-18 (2020).
74 Tempel, S. & Tahi, F. A fast ab-initio method for predicting miRNA precursors in genomes. Nucleic Acids Res. 40, e80-e80 (2012).
75 Griffiths-Jones, S., Saini, H. K., Van Dongen, S. & Enright, A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154-D158 (2007).
76 Coronnello, C. & Benos, P. V. ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res. 41, W159-W164 (2013).
77 Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).
78 Omodaka, K. et al. Artemin augments survival and axon regeneration in axotomized retinal ganglion cells. J. Neurosci. Res. doi:10.1002/jnr.23449 (2014).
79 Chin, C.-H. et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8, S11 (2014).
80 Chen, Y. & Wang, X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 48, D127-D131 (2020).
81 Agarwal, V., Bell, G. W., Nam, J.-W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015).
82 Chou, C.-H. et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46, D296-D302 (2018).