[1] G. Albalawneh and M. Ramli, “Review—Solution Processing of CIGSe Solar Cells Using Simple Thiol-Amine Solvents Mixture: A Review,” ECS J. Solid State Sci. Technol., vol. 9, no. 6, p. 061013, 2020, doi: 10.1149/2162-8777/aba4ee.
[2] M. A. Ashraf and I. Alam, “Numerical simulation of CIGS, CISSe and CZTS-based solar cells with In2S3 as buffer layer and Au as back contact using SCAPS 1D,” Eng. Res. Express, vol. 2, no. 3, 2020, doi: 10.1088/2631-8695/abade6.
[3] L. Hu, H. Zhong, and Z. He, “Toxicity evaluation of cadmium-containing quantum dots: A review of optimizing physicochemical properties to diminish toxicity,” Colloids Surfaces B Biointerfaces, vol. 200, no. February, p. 111609, 2021, doi: 10.1016/j.colsurfb.2021.111609.
[4] S. Aseena, N. Abraham, and V. Suresh Babu, “Optimization of layer thickness of ZnO based perovskite solar cells using SCAPS 1D,” Mater. Today Proc., vol. 43, no. xxxx, pp. 3432–3437, 2020, doi: 10.1016/j.matpr.2020.09.077.
[5] M. Zhou, W. Zhao, Q. Yan, and H. Fu, “Multiple interfacial polarization from 3D net-like ZnO@MWCNTs@NiFe2O4 nanocomposites as broadband microwave absorbers,” J. Alloys Compd., vol. 877, p. 160300, 2021, doi: 10.1016/j.jallcom.2021.160300.
[6] D. A. Fentahun, A. Tyagi, and K. K. Kar, “Numerically investigating the AZO/Cu2O heterojunction solar cell using ZnO/CdS buffer layer,” Optik (Stuttg)., vol. 228, no. December 2020, p. 166228, 2021, doi: 10.1016/j.ijleo.2020.166228.
[7] M. A. Ghebouli, B. Ghebouli, R. Larbi, T. Chihi, and M. Fatmi, “Effect of buffer nature, absorber layer thickness and temperature on the performance of CISSe based solar cells, using SCAPS-1D simulation program,” Optik (Stuttg)., vol. 241, p. 166203, 2021, doi: 10.1016/j.ijleo.2020.166203.
[8] S. Liu et al., “Assembly of Cu–In–Sn–Se quantum dot–sensitized TiO2 films for efficient quantum dot–sensitized solar cell application,” Mater. Today Energy, vol. 21, p. 100798, 2021, doi: 10.1016/j.mtener.2021.100798.
[9] O. Cojocaru-Mirédin et al., “Intense sulphurization process can lead to superior heterojunction properties in Cu(In,Ga)(S,Se)2 thin-film solar cells,” Nano Energy, vol. 89, p. 106375, 2021, doi: 10.1016/j.nanoen.2021.106375.
[10] S. Yu et al., “Structure engineering of solution-processed precursor films for low temperature fabrication of CuIn(S,Se)2 solar cells,” Sol. Energy, vol. 220, pp. 796–801, May 2021, doi: 10.1016/j.solener.2021.03.079.
[11] M. Su et al., “Efficient SnO2/CdS double electron transport layer for Sb2S3 film solar cell,” J. Alloys Compd., vol. 882, p. 160707, 2021, doi: 10.1016/j.jallcom.2021.160707.
[12] H. Chen, Y. Lei, X. Yang, C. Zhao, and Z. Zheng, “Using a CdS under-layer to suppress charge carrier recombination at the Ag2S/FTO interface,” J. Alloys Compd., vol. 879, p. 160348, 2021, doi: 10.1016/j.jallcom.2021.160348.
[13] X. Wen, Z. Lu, G. C. Wang, M. A. Washington, and T. M. Lu, “Efficient and stable flexible Sb2Se3 thin film solar cells enabled by an epitaxial CdS buffer layer,” Nano Energy, vol. 85, no. March, p. 106019, 2021, doi: 10.1016/j.nanoen.2021.106019.
[14] T. Ouslimane, L. Et-taya, L. Elmaimouni, and A. Benami, “Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material,” Heliyon, vol. 7, no. 3, p. e06379, 2021, doi: 10.1016/j.heliyon.2021.e06379.
[15] A. Soltanmoradi, F. Bakhtiargonbadi, H. Esfahani, and R. S. Moakhar, “Effects of microstructure and stoichiometry of ZnO electrospun seed layer on the photoelectrical and photoelectrochemical properties of ZnO nanorods grown on the FTO substrate,” Mater. Chem. Phys., vol. 267, no. March, p. 124718, 2021, doi: 10.1016/j.matchemphys.2021.124718.
[16] I. Alam, R. Mollick, and M. A. Ashraf, “Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers,” Phys. B Condens. Matter, vol. 618, no. March, p. 413187, 2021, doi: 10.1016/j.physb.2021.413187.
[17] J. Ji, P. Sang, and J. H. Kim, “Improving the photoelectrochemical performance of spin-coated WO3/BiVO4/ZnO photoanodes by maximizing charge transfer using an optimized ZnO decoration layer,” Ceram. Int., vol. 47, no. 18, pp. 26260–26270, 2021, doi: 10.1016/j.ceramint.2021.06.035.
[18] H. El Farri, M. Bouachri, M. Fahoume, A. Frimane, and O. Daoudi, “Theoretical simulation of ZnS buffer layer thin films with SCAPS-1D software for photovoltaic applications,” Chalcogenide Lett., vol. 18, no. 8, pp. 457–465, 2021.