[1] World Health Organization, WHO Model List of Essential Medicines, 20th edition, 2017.
[2] Barbosa EJ, Löbenberg R, de Araujo GLB, Bou-Chacra NA. Niclosamide repositioning for treating cancer: Challenges and nano-based drug delivery opportunities. Eur J. Pharm. Biopharm. 2019; 141:58-69. https://doi.org/10.1016/j.ejpb.2019.05.004.
[3] He XG, Li M, Ye WC, Zhou W. Discovery of degradable niclosamide derivatives able to specially inhibit small cell lung cancer (SCLC). Bioorg. Chem. 2021; 107: 104574. https://doi.org/10.1016/j.bioorg.2020.104574.
[4] Lodagekar A, Borkar R, Thatikonda S, Chavan R, Naidu VGM, Shastri N, Srinivas R, Chella N. Formulation and evaluation of cyclodextrin complexes for improved anticancer activity of repurposed drug: Niclosamide. Carbohydr. Polym. 2019; 212: 252-259. https://doi.org/10.1016/j.carbpol.2019.02.041.
[5] Ye T, Xiong Y, Yan Y, Xia Y, Song X, Liu L, Li D, Wang N, Zhang L, Zhu Y, Zeng J, Wei Y, Yu L. The Anthelmintic Drug Niclosamide Induces Apoptosis, Impairs Metastasis and Reduces Immunosuppressive Cells in Breast Cancer Model. PLoS ONE. 2014; 1: e85887. https://doi.org/10.1371/journal.pone.0085887.
[6] Sack U, Walther W, Scudiero D, Selby M, Kobelt D, Lemm M, Fichtner I, Schlag PM, Shoemaker RH, Stein U. Novel Effect of Antihelminthic Niclosamide on S100A4-Mediated Metastatic Progression in Colon Cancer. J. Natl Cancer Inst. 2011;103 (13): 1018–1036. https://doi.org/10.1093/jnci/djr190.
[7] Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008; 22(3):659-661. https://doi.org/10.1096/fj.07-9574LSF.
[8] Li R, You S, Hu ZL, Chen ZG, Sica GL, Khuri FR, Curran WJ, Shin DM, Deng X. Inhibition of STAT3 by niclosamide synergizes with erlotinib against head and neck cancer. PloS One. 2013;8: e74670-e70. https://doi.org/10.1371/journal.pone.0074670.
[9] Ren XM, Duan L, He Q, Zhang Z, Zhou Y, Wu D, Pan J, Pei J, Ding K. Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med. Chem. Lett. 2010; 1: 454-459. https://doi.org/10.1021/ml100146z.
[10] Cheng PY, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken M, Sorg C, Vogl T, Roth J, Gabrilovich D. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 2008; 205: 2235–2249. https://doi.org/10.1084/jem.20080132.
[11] Chen W, Mook RA, Premont RT, Wang J. Niclosamide: Beyond an antihelminthic drug. Cell. Signal. 2018; 41:89-96. https://doi.org/10.1016/j.cellsig.2017.04.001.
[12] Li Y, Zhang L, Zhang Q, Chen H, Denlinger DL. Host diapause status and host diets augmented with cryoprotectants enhance cold hardiness in the parasitoid Nasonia vitripennis. J. Insect Physiol. 2014; 70: 8-14. https://doi.org/10.1016/j.jinsphys.2014.08.005 .
[13] Tian Y, Jacobs E, Jones DS, McCoy CP, Wu H, Andrews GP. The design and development of high drug loading amorphous solid dispersion for hot-melt extrusion platform. Int. J. Pharm. 2020; 586: 119545. https://doi.org/10.1016/j.ijpharm.2020.119545.
[14] Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int. J. Pharm. 2020; 586: 119560. https://doi.org/10.1016/j.ijpharm.2020.119560.
[15] Tan D, Maniruzzaman M, Nokhodchi A. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery. Pharmaceutics. 2018; 10: 203. https://doi.org/10.3390/pharmaceutics10040203.
[16] Patil H, Tiwari RV, Repka MA. 2016. Hot-Melt Extrusion: From Theory to Application in Pharmaceutical Formulation. AAPS PharmSciTech. 2016; 17: 20–42. https://doi.org/10.1208/s12249-015-0360-7.
[17] Cui M, Pan H, Su Y, Fang D, Qiao S, Ding P, Pan W. Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharm Sin B. 2021; 11: 2488-2504. https://doi.org/10.1016/j.apsb.2021.03.015.
[18] Paul GM, Rezaienia A, Wen P, Condoor S, Parkar N, King W, Korakianitis T. Medical Applications for 3D Printing: Recent Developments. Mo Med. 2018; 115:75-81.
[19] Pandey M, Choudhury H, Fern JLC et al. 3D printing for oral drug delivery: a new tool to customize drug delivery. Drug Deliv. and Transl. Res.2020; 10: 986–1001. https://doi.org/10.1007/s13346-020-00737-0.
[20] Jain KK. Textbook of Personalized Medicine. 2nd ed. Basel, Switzerland: Humana Press; 2009:1-3.
[21] Li YY, Jones SJM. Drug repositioning for personalized medicine. Genome Med. 2012; 4: 27-40. https://doi.org/10.1186/gm326.
[22] Sandler N, Preis M. Printed Drug-Delivery Systems for Improved Patient Treatment. Trends Pharmacol. Sci.2016; 37 (12): 1070-1080. https://doi.org/10.1016/j.tips.2016.10.002.
[23] Zema L, Melocchi A, Maroni A, Gazzaniga A. Three-Dimensional Printing of Medicinal Products and the Challenge of Personalized Therapy. J. Pharm. Sci. 2017;106(7): 1697-1705. https://doi.org/10.1016/j.xphs.2017.03.021.
[24] Goyanes A, Allahham N, Trenfield SJ, Stoyanov E, Gaisford S, Basit AW. 2019. Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process. Int. J. Pharm. 2019; 567. https://doi.org/10.1016/j.ijpharm.2019.118471.
[25] Aho J, Bøtker JP, Genina N, Edinger M, Arnfast L, Rantanen J. 2019. Roadmap to 3D-Printed Oral Pharmaceutical Dosage Forms: Feedstock Filament Properties and Characterization for Fused Deposition Modeling. J. Pharm. Sci. 2019; 108(1): 26-35. https://doi.org/10.1016/j.xphs.2018.11.012.
[26] Thiry J, Krier F, Ratwatte S, Thomassin JM, Jerome C, Evrard B. Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes. Eur. J. Pharm. Sci. 2017; 96: 590-597. https://doi.org/10.1016/j.ejps.2016.09.032.
[27] Elbadawi M, Muñiz Castro B, Gavins FKH, Ong JJ, Gaisford S, Pérez G, Basit AW, Cabalar P, Goyanes A. M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines. Int J Pharm. 2020; 590: 119837. doi: 10.1016/j.ijpharm.2020.119837.
[28] Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol. 2010; 62: 1607–1621. https://doi.org/10.1111/j.2042-7158.2010.01030.x.
[29] Patel AR, Vavia PR. Preparation and Evaluation of Taste Masked Famotidine Formulation Using Drug/β-cyclodextrin/Polymer Ternary Complexation Approach. AAPS PharmSciTech. 2008; 9: 544-550. https://doi.org/10.1208/s12249-008-9078-0.
[30] Marreto RN, Cardoso G, dos Santos Souza B, Martin-Pastor M, Cunha-Filho M, Taveira SF, Concheiro A, Alvarez-Lorenzo C. Hot melt-extrusion improves the properties of cyclodextrin-based poly(pseudo)rotaxanes for transdermal formulation. Int. J. Pharm. 2020; 586: 119510. https://doi.org/10.1016/j.ijpharm.2020.119510.
[31] Medarević D, Kachrimanis K, Djurić Z, Ibrić S. Influence of hydrophilic polymers on the complexation of carbamazepine with hydroxypropyl-β-cyclodextrin. Eur. J. Pharm. Sci. 2015; 78:273-285. https://doi.org/10.1016/j.ejps.2015.08.001.
[32] Taupitz T, Dressman JB, Buchanan CM, Klein S. Cyclodextrin-water soluble polymer ternary complexes enhance the solubility and dissolution behaviour of poorly soluble drugs. Case example: Itraconazole. Eur J Pharm Biopharm. 2013; 83:378-387. DOI: 10.1016/j.ejpb.2012.11.003.
[33] Higuchi T, Connors KA. Phase Solubility Techniques. Adv. Anal. Chem. Instrum.1965;4:117-212.
[34] Italian Official Pharmacopoeia XII edition: 351-352.
[35] Loftsson T, Hreinsdóttir D, Másson M. Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 2005; 302:18-28. https://doi.org/10.1016/j.ijpharm.2005.05.042.
[36] Spath S, Seitz H. Influence of grain size and grain-size distribution on workability of granules with 3D printing. Int. J. Adv. Manuf. Technol. 2014; 70: 135–144. DOI 10.1007/s00170-013-5210-8.
[37] Palugan L, Filippin I, Cirilli M, Moutaharrik S, Zema L, Cerea M, Maroni A, Foppoli A, Gazzaniga A. Cellulase as an “active” excipient in prolonged-release HPMC matrices: A novel strategy towards zero-order release kinetics. Int. J. Pharm. 2021; 607:121005. https://doi.org/10.1016/j.ijpharm.2021.121005.