Table 1. Summary statistics for fitting and validation data sets.
Variable
|
Fitting data (70%)
|
|
Validation data (30%)
|
Mean
|
Min.
|
Max.
|
S.D.
|
|
Mean
|
Min.
|
Max.
|
S.D.
|
Cedar (630 trees in 21 plots)
|
|
Cedar (270 trees in 9 plots)
|
d (cm)
|
10.31
|
3.20
|
20.00
|
3.12
|
|
11.37
|
5.40
|
20.00
|
3.50
|
h (m)
|
6.12
|
3.00
|
11.75
|
1.42
|
|
6.66
|
3.20
|
11.00
|
1.81
|
Age (years)
|
26.00
|
17.00
|
35.00
|
6.30
|
|
31.00
|
23.00
|
35.00
|
4.70
|
D0
|
13.96
|
9.72
|
18.30
|
2.38
|
|
14.86
|
7.82
|
19.24
|
3.49
|
H0
|
7.51
|
5.44
|
10.02
|
1.21
|
|
8.30
|
5.66
|
10.65
|
1.67
|
G
|
30.30
|
12.75
|
50.70
|
10.86
|
|
36.96
|
12.01
|
58.25
|
15.02
|
dm
|
10.29
|
6.68
|
13.53
|
2.02
|
|
11.35
|
6.74
|
14.64
|
2.51
|
hm
|
6.10
|
4.31
|
7.93
|
1.03
|
|
6.66
|
4.50
|
8.65
|
1.37
|
Dg
|
10.57
|
6.98
|
13.92
|
2.08
|
|
11.60
|
6.77
|
14.92
|
2.59
|
d, diameter at breast height (1.3 m above ground level); h, total tree height; H0, dominant height; D0, dominant diameter; G, basal area; dm, mean diameter; hm, mean height; Dg, quadratic mean diameter.
Table 2. Fit statistics for equation (1) for different combinations of random parameters.
Random Parameters
|
AIC
(smaller is better)
|
BIC
(smaller is better)
|
Cedar
|
|
|
None (Fixed-effects)
|
2503
|
2522
|
β 1
|
1617
|
1624
|
β 2
|
1821
|
1828
|
β 3
|
1605
|
1612
|
β 1 and β 2
|
1540
|
1550
|
β 1 and β 3
|
1539
|
1548
|
β 2 and β 3
|
1714
|
1724
|
β 1, β 2 and β 3
|
1656
|
1670
|
Table 3. Parameter estimates and standard errors in parentheses for the fixed- and mixed-effects regression models.
Parameter
estimates
|
Generalized Model
|
Fixed-effects
|
Mixed-effects
|
|
|
|
β1
|
-6.90872
(0.5670)
|
7.8237
(0.6187)
|
24.7062
(11.3829)
|
β2
|
-0.02937
(0.0045)
|
0.1348
(0.0315)
|
0.01597
(0.01127)
|
β3
|
|
1.5604
(0.2998)
|
0.8643
(0.07504)
|
|
|
0.8311
(0.0468)
|
0.2216
(0.0129)
|
|
|
|
73.9740
(113.22)
|
|
|
|
0.04480
(0.0176)
|
|
|
|
1.6671
(1.3800)
|
s2, residual variance of the model; variance of the random-effect , variance of the random-effect , covariance of the random-effects and .
Table 4. Fit statistics results for the constructed basic h–d mixed-model, generalized h-d model and artificial neural network models (LMANN and RPANN), for a) the fitting, b) the validation data sets and c) the calibrated adjusted fixed and mixed models, using 1, 2, and 3 sampled trees for calibration.
Fitting data set (630 trees in 21 plots)
|
Model
|
Type
|
RMSE
|
FI
|
MD
|
MAD
|
LMANN Model: 3-2-1
|
ANN
|
0.5512
|
0.8241
|
-0.0174
|
0.4306
|
RPANN Model: 3-2-1
|
ANN
|
0.5387
|
0.8353
|
0.0074
|
0.4155
|
Chapman-Richards (Eq. 1)
|
Fixed
|
0.9116
|
0.5912
|
-0.0019
|
0.7088
|
Chapman-Richards (Eq. 14)
|
Mixed
|
0.6316
|
0.8059
|
0.1905
|
0.4684
|
Krumland and Wensel (1982) (Eq.13)
|
Generalized
|
0.5677
|
0.8422
|
-0.0429
|
0.4299
|
Validation data set (270 trees in 9 plots)
|
Model
|
Type
|
RMSE
|
FI
|
MD
|
MAD
|
LMANN Model: 3-2-1
|
ANN
|
0.6839
|
0.8000
|
-0.1138
|
0.5673
|
RPANN Model: 3-2-1
|
ANN
|
0.6671
|
0.8176
|
-0.0995
|
0.5500
|
Chapman-Richards (Eq. 1)
|
Fixed
|
1.1401
|
0.6017
|
0.2101
|
0.8943
|
Krumland and Wensel (1982) (Eq. 13)
|
Generalized
|
0.7210
|
0.7825
|
-0.2272
|
0.5985
|
Validation data (270 trees in 9 plots) after using localization
|
Chapman-Richards (Eq. 3)
|
Fixed-Calibrated (1)
|
0.8759
|
0.7649
|
0.3114
|
0.6417
|
Chapman-Richards (Eq. 3)
|
Fixed-Calibrated (2)
|
0.7427
|
0.8310
|
-0.1683
|
0.5937
|
Chapman-Richards (Eq. 3)
|
Fixed-Calibrated (3)
|
0.7348
|
0.8346
|
-0.1778
|
0.5809
|
Chapman-Richards (Eq. 14)
|
Mixed-Calibrated (1)
|
0.7573
|
0.8243
|
0.2129
|
0.5798
|
Chapman-Richards (Eq. 14)
|
Mixed-Calibrated (2)
|
0.6799
|
0.8585
|
-0.1335
|
0.5377
|
Chapman-Richards (Eq. 14)
|
Mixed-Calibrated (3)
|
0.6773
|
0.8594
|
-0.1523
|
0.5242
|
RMSE, root mean square error; FI, fit index; MD, mean difference; MAD, mean absolute difference; ANN, artificial neural network model. aA bold, italic number denotes the best method for cedar plantations.