1 Kupferschmidt, K. The lockdowns worked-but what comes next? Science 368, 218-219, doi:10.1126/science.368.6488.218 (2020).
2 Byambasuren, O. et al. Estimating the seroprevalence of SARS-CoV-2 infections: systematic review. medRxiv, doi:10.1101/2020.07.13.20153163 (2020).
3 Fontanet, A. & Cauchemez, S. COVID-19 herd immunity: where are we? Nat Rev Immunol 20, 583-584, doi:10.1038/s41577-020-00451-5 (2020).
4 Chowdhury, R. et al. Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries. Eur J Epidemiol 35, 389-399, doi:10.1007/s10654-020-00649-w (2020).
5 Giordano, G. et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat Med 26, 855-860, doi:10.1038/s41591-020-0883-7 (2020).
6 Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H. & Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 368, 860, doi:10.1126/science.abb5793 (2020).
7 Prem, K. et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Pub Hlth 5, e261-e270, doi:10.1016/S2468-2667(20)30073-6 (2020).
8 Leung, K., Wu, J. T., Liu, D. & Leung, G. M. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. The Lancet 395, 1382-1393, doi:10.1016/S0140-6736(20)30746-7 (2020).
9 Peng, L., Yang, W., Zhang, D., Zhuge, C. & Hong, L. Epidemic analysis of COVID-19 in China by dynamical modeling. medRxiv, doi:10.1101/2020.02.16.20023465 (2020).
10 Read, J. M., Bridgen, J. R. E., Cummings, D. A. T., Ho, A. & Jewell, C. P. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. medRxiv, doi:10.1101/2020.01.23.20018549 (2020).
11 Roda, W. C., Varughese, M. B., Han, D. & Li, M. Y. Why is it difficult to accurately predict the COVID-19 epidemic? Infect Dis Model 5, 271-281, doi:10.1016/j.idm.2020.03.001 (2020).
12 Wu, J. T., Leung, K. & Leung, G. M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet 395, 689-697, doi:10.1016/S0140-6736(20)30260-9 (2020).
13 Brett, T. S. & Rohani, P. Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies. Proc Natl Acad Sci U S A, 117, 25897-25903, doi:10.1073/pnas.2008087117 (2020).
14 Britton, T., Ball, F. & Trapman, P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science 369, 846-849, doi:10.1126/science.abc6810 (2020).
15 Venkatramanan, S. et al. Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics 22, 43-49, doi:10.1016/j.epidem.2017.02.010 (2018).
16 Beven, K. Environmental modelling: An uncertain future? (CRC press, 2010).
17 Dietze, M. C. Prediction in ecology: a first-principles framework. Ecol Appl 27, 2048-2060, doi:10.1002/eap.1589 (2017).
18 Dietze, M. C. et al. Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proc Natl Acad Sci U S A, 115, 1424, doi:10.1073/pnas.1710231115 (2018).
19 Keenan, T. F., Carbone, M. S., Reichstein, M. & Richardson, A. D. The model-data fusion pitfall: assuming certainty in an uncertain world. Oecologia 167, 587-597, doi:10.1007/s00442-011-2106-x (2011).
20 Niu, S. et al. The role of data assimilation in predictive ecology. Ecosphere 5, 65, doi:10.1890/es13-00273.1 (2014).
21 White, E. P. et al. Developing an automated iterative near-term forecasting system for an ecological study. Methods Ecol Evol 10, 332-344, doi:10.1111/2041-210x.13104 (2019).
22 White, B. G. et al. Short-Term Forecast Validation of Six Models. Weather Forecast 14, 84-108, doi:10.1175/1520-0434(1999)014<0084:STFVOS>2.0.CO;2 (1999).
23 Calvetti, D., Hoover, A. P., Rose, J. & Somersalo, E. Metapopulation Network Models for Understanding, Predicting, and Managing the Coronavirus Disease COVID-19. Front Phys 8, 261, doi: 10.3389/fphy.2020.00261 (2020).
24 O'Sullivan, D., Gahegan, M., Exeter, D. J. & Adams, B. Spatially explicit models for exploring COVID-19 lockdown strategies. T Gis 24, 967-1000, doi:10.1111/tgis.12660 (2020).
25 Bisset, K. R. et al. INDEMICS: An Interactive High-Performance Computing Framework for Data-Intensive Epidemic Modeling. Acm T Model Comput S 24, 10.1145/2501602, doi:10.1145/2501602 (2014).
26 Chao, D. L., Halloran, M. E., Obenchain, V. J. & Longini, I. M., Jr. FluTE, a Publicly Available Stochastic Influenza Epidemic Simulation Model. PLOS Comput Biol 6, e1000656, doi:10.1371/journal.pcbi.1000656 (2010).
27 Marathe, M. V. & Ramakrishnan, N. Recent Advances in Computational Epidemiology. IEEE Intel Sys 28, 96-101, doi:10.1109/MIS.2013.114 (2013).
28 Dowd, M. A sequential Monte Carlo approach for marine ecological prediction. Environmetrics 17, 435-455, doi:10.1002/env.780 (2006).
29 Gu, F. On-demand data assimilation of large-scale spatial temporal systems using sequential Monte Carlo methods. Simul Model Pract Theory 85, 1-14, doi:https://doi.org/10.1016/j.simpat.2018.03.007 (2018).
30 Michael, E. et al. Continental-scale, data-driven predictive assessment of eliminating the vector-borne disease, lymphatic filariasis, in sub-Saharan Africa by 2020. BMC Med 15, 176, doi:10.1186/s12916-017-0933-2 (2017).
31 Poole, D. & Raftery, A. E. Inference for Deterministic Simulation Models: The Bayesian Melding Approach. J Am Stat Assoc 95, 1244-1255 doi:10.1080/01621459.2000.10474324 (2000).
32 Singh, B. K. & Michael, E. Bayesian calibration of simulation models for supporting management of the elimination of the macroparasitic disease, Lymphatic Filariasis. Parasites Vectors 8, 522, doi:10.1186/s13071-015-1132-7 (2015).
33 Sisson, S. A., Fan, Y. & Tanaka, M. M. Sequential Monte Carlo without likelihoods. Proc Natl Acad Sci U S A, 104, 1760, doi:10.1073/pnas.0607208104 (2007).
34 Spear, R. C., Hubbard, A., Liang, S. & Seto, E. Disease transmission models for public health decision making: toward an approach for designing intervention strategies for Schistosomiasis japonica. Environ Health Perspect 110, 907-915, doi:10.1289/ehp.02110907 (2002).
35 Taylor, S. D. & White, E. P. Automated data-intensive forecasting of plant phenology throughout the United States. Ecol Appl 30, e02025, doi:10.1002/eap.2025 (2020).
36 Beaulieu-Jones, B. K. & Greene, C. S. Reproducibility of computational workflows is automated using continuous analysis. Nat Biotechnol 35, 342-346, doi:10.1038/nbt.3780 (2017).
37 Delgoshaei, P., Austin, M. A. & Pertzborn, A. J. A Semantic Framework for Modeling and Simulation of Cyber-Physical Systems. Int J Adv Sys Measure 7, 223-238, (2014).
38 Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 20, 533-534, doi:10.1016/S1473-3099(20)30120-1 (2020).
39 Henkel, R., Wolkenhauer, O. & Waltemath, D. Combining computational models, semantic annotations and simulation experiments in a graph database. Database 2015 (2015).
40 Merkel, D. Docker: lightweight linux containers for consistent development and deployment. Linux J 2014, 2 (2014).
41 Nakamura, K., Higuchi, T. & Hirose, N. Sequential Data Assimilation: Information Fusion of a Numerical Simulation and Large Scale Observation Data. J UCS 12, 608-626 (2006).
42 Stodden, V. & Miguez, S. Best Practices for Computational Science: Software Infrastructure and Environments for Reproducible and Extensible Research. J Open Res Soft 2, e21, doi: http://doi.org/10.5334/jors.ay (2014).
43 Unacast. Social distancing Scoreboard. https://www.unacast.com/covid19/social-distancing-scoreboard (2020).
44 Willem, L. et al. SOCRATES: an online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19. BMC Res Notes 13, 293, doi:10.1186/s13104-020-05136-9 (2020).
45 Luo, Y. et al. Ecological forecasting and data assimilation in a data-rich era. Ecol Appl 21, 1429-1442, doi:10.1890/09-1275.1 (2011).
46 Hunter, E., Mac Namee, B. & Kelleher, J. An open-data-driven agent-based model to simulate infectious disease outbreaks. Plos One 13, e0208775, doi: 10.1371/journal.pone.0208775 (2018).
47 Iboi, E. A., Ngonghala, C. N. & Gumel, A. B. Will an imperfect vaccine curtail the COVID-19 pandemic in the U.S.? Infect Dis Model 5, 510-524, doi:10.1016/j.idm.2020.07.006 (2020).
48 Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect Dis, doi:10.1016/S1473-3099(20)30553-3 (2020).
49 Contreras, S., Villavicencio, H. A., Medina-Ortiz, D., Biron-Lattes, J. P. & Olivera-Nappa, A. A multi-group SEIRA model for the spread of COVID-19 among heterogeneous populations. Chaos Sol Fract 136, 109925, doi:10.1016/j.chaos.2020.109925 (2020).
50 Mossong, J. et al. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. PLOS Med 5, e74, doi:10.1371/journal.pmed.0050074 (2008).
51 Chen, R. Sequential Monte Carlo methods and their applications. in Markov Chain Monte Carlo Vol. Volume 7 Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore (eds. Kendell, W. S., Liang, F. & Wang, J-S.) 147-182 (World Scientific, 2005).
52 Doucet, A., Godsill, S. & Andrieu, C. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat Comput 10, 197-208, doi:Doi 10.1023/A:1008935410038 (2000).
53 Fearnhead, P. & Kunsch, H. R. Particle Filters and Data Assimilation. Annu Rev Stat Appl 5, 421-449, doi:10.1146/annurev-statistics-031017-100232 (2018).
54 Gu, F., Butt, M., Ai, C., Shen, X. & Xiao, J. Adaptive particle filtering in data assimilation of wildfire spread simulation. in Proceedings of the Conference on Summer Computer Simulation 1–10 (Society for Computer Simulation International, Chicago, Illinois, 2015).
55 Florida Agency for Health Care Administration. https://bi.ahca.myflorida.com/t/ABICC/views/Public/ICUBedsCounty?%3AshowAppBanner=false&%3Adisplay_count=n&%3AshowVizHome=n&%3Aorigin=viz_share_link&%3AisGuestRedirectFromVizportal=y&%3Aembed=y (2020).
56 Polonsky, J. A. et al. Outbreak analytics: a developing data science for informing the response to emerging pathogens. Philos T R Soc B 374, 20180276, doi:
10.1098/rstb.2018.0276 (2019).
57 Gambhir, M. et al. Geographic and ecologic heterogeneity in elimination thresholds for the major vector-borne helminthic disease, lymphatic filariasis. BMC biology 8, 22 (2010).
58 Spear, R. C. & Hubbard, A. Parameter estimation and site-specific calibration of disease transmission models. in Modelling Parasite Transmission and Control (eds. Michael, E. & Spear, R.C.) 99-111 (Springer, 2010).
59 Brienen, N. C., Timen, A., Wallinga, J., Van Steenbergen, J. E. & Teunis, P. F. The effect of mask use on the spread of influenza during a pandemic. Risk Anal 30, 1210-1218 (2010).