1 Kaul, D. An overview of coronaviruses including the SARS-2 coronavirus - Molecular biology, epidemiology and clinical implications. Curr Med Res Pract 10, 54-64, doi:10.1016/j.cmrp.2020.04.001 (2020).
2 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382, 727-733, doi:10.1056/NEJMoa2001017 (2020).
3 Coronaviridae Study Group of the International Committee on Taxonomy of, V. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5, 536-544, doi:10.1038/s41564-020-0695-z (2020).
4 Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565-574, doi:10.1016/S0140-6736(20)30251-8 (2020).
5 Chan, J. F. et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9, 221-236, doi:10.1080/22221751.2020.1719902 (2020).
6 Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273, doi:10.1038/s41586-020-2012-7 (2020).
7 Graham, R. L., Sparks, J. S., Eckerle, L. D., Sims, A. C. & Denison, M. R. SARS coronavirus replicase proteins in pathogenesis. Virus Res 133, 88-100, doi:10.1016/j.virusres.2007.02.017 (2008).
8 Hui, D. S. et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 91, 264-266, doi:10.1016/j.ijid.2020.01.009 (2020).
9 Brian, D. A. & Baric, R. S. Coronavirus genome structure and replication. Curr Top Microbiol Immunol 287, 1-30, doi:10.1007/3-540-26765-4_1 (2005).
10 Kim, D. et al. The Architecture of SARS-CoV-2 Transcriptome. Cell 181, 914-921 e910, doi:10.1016/j.cell.2020.04.011 (2020).
11 Snijder, E. J. et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. Journal of molecular biology 331, 991-1004, doi:10.1016/s0022-2836(03)00865-9 (2003).
12 Shin, D. et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, doi:10.1038/s41586-020-2601-5 (2020).
13 Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science 368, 409-412, doi:10.1126/science.abb3405 (2020).
14 Ahn, D. G., Choi, J. K., Taylor, D. R. & Oh, J. W. Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Arch Virol 157, 2095-2104, doi:10.1007/s00705-012-1404-x (2012).
15 Thiel, V. et al. Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84, 2305-2315, doi:10.1099/vir.0.19424-0 (2003).
16 te Velthuis, A. J., Arnold, J. J., Cameron, C. E., van den Worm, S. H. & Snijder, E. J. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res 38, 203-214, doi:10.1093/nar/gkp904 (2010).
17 Subissi, L. et al. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets. Antiviral Res 101, 122-130, doi:10.1016/j.antiviral.2013.11.006 (2014).
18 Johnson, M. A., Jaudzems, K. & Wuthrich, K. NMR Structure of the SARS-CoV Nonstructural Protein 7 in Solution at pH 6.5. J Mol Biol 402, 619-628, doi:10.1016/j.jmb.2010.07.043 (2010).
19 von Brunn, A. et al. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome. PLoS One 2, e459, doi:10.1371/journal.pone.0000459 (2007).
20 Zhai, Y. et al. Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat Struct Mol Biol 12, 980-986, doi:10.1038/nsmb999 (2005).
21 Ma, Y. et al. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci U S A 112, 9436-9441, doi:10.1073/pnas.1508686112 (2015).
22 Chen, Y. et al. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2'-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog 7, e1002294, doi:10.1371/journal.ppat.1002294 (2011).
23 Kirchdoerfer, R. N. & Ward, A. B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun 10, 2342, doi:10.1038/s41467-019-10280-3 (2019).
24 Wang, Q. et al. Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell 182, 417-428 e413, doi:10.1016/j.cell.2020.05.034 (2020).
25 Hillen, H. S. et al. Structure of replicating SARS-CoV-2 polymerase. Nature 584, 154-156, doi:10.1038/s41586-020-2368-8 (2020).
26 Yin, W. et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368, 1499-1504, doi:10.1126/science.abc1560 (2020).
27 Imbert, I. et al. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J 25, 4933-4942, doi:10.1038/sj.emboj.7601368 (2006).
28 Deming, D. J., Graham, R. L., Denison, M. R. & Baric, R. S. Processing of open reading frame 1a replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication. J Virol 81, 10280-10291, doi:10.1128/JVI.00017-07 (2007).
29 Pan, J. et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PLoS One 3, e3299, doi:10.1371/journal.pone.0003299 (2008).
30 Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326 (1997).
31 Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774-797, doi:10.1016/j.jmb.2007.05.022 (2007).
32 Scharer, M. A., Grutter, M. G. & Capitani, G. CRK: an evolutionary approach for distinguishing biologically relevant interfaces from crystal contacts. Proteins 78, 2707-2713, doi:10.1002/prot.22787 (2010).
33 Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235-242, doi:10.1107/S0907444910045749 (2011).
34 Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221, doi:10.1107/S0907444909052925 (2010).
35 McCoy, A. J. et al. Phaser crystallographic software. J Appl Crystallogr 40, 658-674, doi:10.1107/S0021889807021206 (2007).
36 Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46, W296-W303, doi:10.1093/nar/gky427 (2018).