1. Hayes RJ, Moulton LH. Cluster randomised trials. Boca Raton, FL: CRC Press; 2009. 315 p.
2. Eldridge S, Kerry SM. A practical guide to cluster randomised trials in health services research. Chichester, West Sussex: John Wiley & Sons; 2012. 278 p.
3. Awasthi S, Peto R, Read S, Clark S, Pande V, Bundy D, et al. Vitamin A supplementation every 6 months with retinol in 1 million pre-school children in north India: DEVTA, a cluster-randomised trial. Vol. 381, Lancet. England: King George’s Medical University, Lucknow, Uttar Pradesh, India.; 2013. p. 1469–77.
4. WHO | Vitamin A supplementation in infants and children 6–59 months of age [Internet]. [cited 2020 Jul 17]. Available from: https://www.who.int/elena/titles/vitamina_children/en/
5. OSSU. Our Impact – Ontario SPOR SUPPORT Unit [Internet]. 2020 [cited 2020 Jul 17]. Available from: https://ossu.ca/our-impact/
6. Waters E, Armstrong R, Swinburn B, Moore L, Dobbins M, Anderson L, et al. An exploratory cluster randomised controlled trial of knowledge translation strategies to support evidence-informed decision-making in local governments (The KT4LG study). BMC Public Health. 2011;11:34.
7. Taljaard M, Goldstein CE, Giraudeau B, Nicholls SG, Carroll K, Hey SP, et al. Cluster over individual randomization: are study design choices appropriately justified? Review of a random sample of trials. Clin Trials. 2020 Jun 1;17(3):253–63.
8. Hemming K, Carroll K, Thompson J, Forbes A, Taljaard M, Dutton SJ, et al. Quality of stepped-wedge trial reporting can be reliably assessed using an updated CONSORT: crowd-sourcing systematic review. Vol. 107, Journal of Clinical Epidemiology. Elsevier USA; 2019. p. 77–88.
9. Dron L, Taljaard M, Cheung YB, Grais R, Ford N, Thorlund K, et al. The role and challenges of cluster randomised trials for global health. Vol. 9, The Lancet Global Health. Elsevier Ltd; 2021. p. e701–10.
10. Ajmera Y, Singhal S, Dwivedi SN, Dey AB. The changing perspective of clinical trial designs. Vol. 12, Perspectives in Clinical Research. Wolters Kluwer Medknow Publications; 2021. p. 66–71.
11. Pubmed [Internet]. 2020. Available from: https://pubmed.ncbi.nlm.nih.gov/?term=2000%3A2019%5Bdp%5D
12. Taljaard M, McGowan J, Grimshaw JM, Brehaut JC, McRae A, Eccles MP, et al. Electronic search strategies to identify reports of cluster randomized trials in MEDLINE: low precision will improve with adherence to reporting standards. BMC Med Res Methodol. 2010 Feb 16;10(1):15.
13. Cohen AM, Smalheiser NR, McDonagh MS, Yu C, Adams CE, Davis JM, et al. Automated confidence ranked classification of randomized controlled trial articles: an aid to evidence-based medicine. J Am Med Inf Assoc. 2015;22(3):707–17.
14. Wallace B, Noel-Storr A, Marshall I, Cohen A, Smalheiser N, Thomas J. Identifying reports of randomized controlled trials (RCTs) via a hybrid machine learning and crowdsourcing approach. J Am Med Inf Assoc. 2017;24(6):1165–8.
15. Marshall IJ, Noel-Storr A, Kuiper J, Thomas J, Wallace BC. Machine learning for identifying Randomized Controlled Trials: An evaluation and practitioner’s guide. In: Research Synthesis Methods. John Wiley and Sons Ltd; 2018. p. 602–14.
16. Nicholls SG, Carroll K, Hey SP, Zwarenstein M, Zhang J, Nix H, et al. A review of pragmatic trials found a high degree of diversity in design and scope, deficiencies in reporting and trial registry data, and poor indexing. J Clin Epidemiol. 2021 Mar;
17. Taljaard M, McDonald S, Nicholls SG, Carroll K, Hey SP, Grimshaw JM, et al. A search filter to identify pragmatic trials in MEDLINE was highly specific but lacked sensitivity. J Clin Epidemiol. 2020 Aug 1;124:75–84.
18. Kim Y. Convolutional Neural Networks for Sentence Classification. EMNLP 2014 - 2014 Conf Empir Methods Nat Lang Process Proc Conf. 2014 Aug 25;1746–51.
19. Zhang Y, Wallace B. A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification. 2015 Oct 13;
20. Young T, Hazarika D, Poria S, Cambria E. Recent Trends in Deep Learning Based Natural Language Processing. 2017 Aug 9;
21. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017 Jun 1;60(6):84–90.
22. Wang J. Using Convolutional Neural Networks to Extract Keywords and Keyphrases About Foodborne Illnesses. The University of Guelph; 2019.
23. Raschka S. Python Machine Learning. Hussain A, Youe R, Rajani M, Tuljapurkar R, Chindarkar MS, Khan T, et al., editors. Birmingham: Packt Publishing Ltd; 2015.
24. Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching Word Vectors with Subword Information. Trans Assoc Comput Linguist. 2016 Jul 15;5:135–46.
25. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. In: 1st International Conference on Learning Representations, ICLR 2013 - Workshop Track Proceedings. International Conference on Learning Representations, ICLR; 2013.
26. Müller AC, Guido S. Introduction to with Python Learning Machine. Schanafelt D, editor. Proceedings of the Speciality Conference on Infrastructure Condition Assessmenr: Art, Science, Practice. Sebastopol, California: O’Reilly Media, Inc.; 2017.
27. Beel J, Gipp B, Langer S, Breitinger C. Research-paper recommender systems: a literature survey. Int J Digit Libr. 2016 Nov 26;17(4):305–38.
28. Buda M, Maki A, Mazurowski MA. A systematic study of the class imbalance problem in convolutional neural networks . Neural Networks. 2018;106:249–59.
29. Bergstra J, Komer B, Eliasmith C, Yamins D, Cox DD. Hyperopt: a Python library for model selection and hyperparameter optimization. Comput Sci Discov. 2015;8(1):14008.
30. Bergstra J, Bardenet R, Bengio Y, Kégl B. Algorithms for Hyper-Parameter Optimization. NIPS. 2011;24:2546–54.
31. Bergstra J, Yamins D, Cox DD. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In: Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28. JMLR.org; 2013. p. I–115–I–123. (ICML’13).
32. Srivastava N, Hinton G, Krizhevsky A, Salakhutdinov R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J Mach Learn Res. 2014;15(56):1929–58.
33. Dietterich TG. Ensemble Methods in Machine Learning. In: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2000. p. 1–15.
34. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.
35. Kessler JS. Scattertext: a Browser-Based Tool for Visualizing how Corpora Differ. CoRR. 2017;abs/1703.0.
36. Rehurek R, Sojka P. Software Framework for Topic Modelling with Large Corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Valletta, Malta: ELRA; 2010. p. 45–50.
37. Chollet F. Keras [Internet]. GitHub; 2015. Available from: https://github.com/fchollet/keras
38. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. 2016.
39. Oliphant TE. Guide to NumPy. 2nd ed. Austin, Texas: CreateSpace Independent Publishing Platform; 2015.
40. Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007;9(3):90–5.
41. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al. API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning. 2013. p. 108–22.
42. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in {P}ython. J Mach Learn Res. 2011;12:2825–30.
43. McKinney W. Data Structures for Statistical Computing in Python. In: Proceedings of the 9th Python in Science Conference. 2010. p. 51–6.
44. The pandas development team. pandas-dev/pandas: Pandas. Zenodo; 2020.
45. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.; 2019.
46. Campbell MK, Piaggio G, Elbourne DR, Altman DG, CONSORT Group. Consort 2010 statement: extension to cluster randomised trials. BMJ. 2012 Jan 4;345:e5661.
47. Al-Jaishi AA, Carroll K, Goldstein CE, Dixon SN, Garg AX, Nicholls SG, et al. Reporting of key methodological and ethical aspects of cluster trials in hemodialysis require improvement: A systematic review. Vol. 21, Trials. BioMed Central Ltd; 2020.
48. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv.org. 2019;arXiv:1810.
49. Devlin J, Chang M-W. Open Sourcing BERT: State-of-the-Art Pre-training for Natural Language Processing [Internet]. Google AI Blog. 2018 [cited 2021 Oct 14]. Available from: https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
50. Iansavichus A V, Haynes RB, Lee CWC, Wilczynski NL, McKibbon A, Shariff SZ, et al. Dialysis search filters for PubMed, Ovid MEDLINE, and Embase databases. Clin J Am Soc Nephrol. 2012 Oct;7(10):1624–3161.
51. Kauric-Klein Z. Improving blood pressure control in end stage renal disease through a supportive educative nursing intervention. Nephrol Nurs J. 2012;39(3):217–28.
52. Howren MB, Kellerman QD, Hillis SL, Cvengros J, Lawton W, Christensen AJ. Effect of a Behavioral Self-Regulation Intervention on Patient Adherence to Fluid-Intake Restrictions in Hemodialysis: a Randomized Controlled Trial. Ann Behav Med. 2016 Apr;50(2):167–76.
53. Waterman AD, Peipert JD. An Explore Transplant Group Randomized Controlled Education Trial to Increase Dialysis Patients’ Decision-Making and Pursuit of Transplantation. Prog Transplant. 2018 Jun 26;28(2):174–83.