In optimization tasks, it is interesting to achieve a set of efficient solutions instead of one single output, in the case the best solution is not suitable. Many niching methods offer a diversified response, yet some important problems are common: (1) The most interesting solutions of each local optimum are not identified. Thus, the output is the overall population of solutions, which increases the work of the designer in verifying which solution is the most interesting. (2) Existing niching algorithms tend to distribute the solutions on the most promising regions, over-populating some local optima and sub-populating others, which leads to poor optimization.
To solve these challenges, a novel niching method is presented, named local optimum ranking 2 (LOR2). This sorting methodology favors the exploration of a defined number of local optima and ranks each local population by objective value within each local optimum. Thus, is performed a multi-focus exploration, with an equalized number of solutions on each local optimum, while identifying which solutions are the local apices. To exemplify its application, the LOR2 algorithm is applied in the design optimization of a metallic cantilever beam. It achieves a set of efficient and diverse design configurations, offering both performance and diversity for structural design challenges.
In addition, a second experiment describes how the algorithm can be applied to segment the domain of any function, into a mesh of similar sized or custom-sized elements. Thus, it can significantly simplify metamodels and reduce their computation time.