[1] Lheureux S, Gourley C, Vergote I, et al. Epithelial ovarian cancer [J]. Lancet, 2019,393(10177):1240-1253.
[2] Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: Evolution of management in the era of precision medicine [J]. CA Cancer J Clin, 2019,69(4):280-304.
[3] Krzystyniak J, Ceppi L, Dizon DS, et al. Epithelial ovarian cancer: The molecular genetics of epithelial ovarian cancer [J]. Ann Oncol, 2016,27 Suppl 1(i4-i10.
[4] Schwartz L, Supuran CT, Alfarouk KO. The warburg effect and the hallmarks of cancer [J]. Anticancer Agents Med Chem, 2017,17(2):164-170.
[5] Kato Y, Maeda T, Suzuki A, et al. Cancer metabolism: New insights into classic characteristics [J]. The Japanese dental science review, 2018,54(1):8-21.
[6] Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: Progress and prospects [J]. Molecular cancer, 2013,12(152.
[7] Corbet C, Feron O. Tumour acidosis: From the passenger to the driver's seat [J]. Nat Rev Cancer, 2017,17(10):577-593.
[8] Porporato PE, Filigheddu N, Pedro JMB, et al. Mitochondrial metabolism and cancer [J]. Cell research, 2018,28(3):265-280.
[9] Herst PM, Grasso C, Berridge MV. Metabolic reprogramming of mitochondrial respiration in metastatic cancer [J]. Cancer Metastasis Rev, 2018,37(4):643-653.
[10] Lu J, Tan M, Cai Q. The warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism [J]. Cancer Lett, 2015,356(2 Pt A):156-164.
[11] Corbet C, Feron O. Cancer cell metabolism and mitochondria: Nutrient plasticity for tca cycle fueling [J]. Biochim Biophys Acta Rev Cancer, 2017,1868(1):7-15.
[12] Westermann B. Mitochondrial fusion and fission in cell life and death [J]. Nat Rev Mol Cell Biol, 2010,11(12):872-884.
[13] Lee H, Yoon Y. Mitochondrial fission and fusion [J]. Biochem Soc Trans, 2016,44(6):1725-1735.
[14] Tilokani L, Nagashima S, Paupe V, et al. Mitochondrial dynamics: Overview of molecular mechanisms [J]. Essays Biochem, 2018,62(3):341-360.
[15] Trotta AP, Chipuk JE. Mitochondrial dynamics as regulators of cancer biology [J]. Cell Mol Life Sci, 2017,74(11):1999-2017.
[16] Huang Q, Zhan L, Cao H, et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ros-modulated coordinated regulation of the nfkb and tp53 pathways [J]. Autophagy, 2016,12(6):999-1014.
[17] Li J, Huang Q, Long X, et al. Mitochondrial elongation-mediated glucose metabolism reprogramming is essential for tumour cell survival during energy stress [J]. Oncogene, 2017,36(34):4901-4912.
[18] Chen L, Zhang J, Lyu Z, et al. Positive feedback loop between mitochondrial fission and notch signaling promotes survivin-mediated survival of tnbc cells [J]. Cell Death Dis, 2018,9(11):1050.
[19] Zhao J, Zhang J, Yu M, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells [J]. Oncogene, 2013,32(40):4814-4824.
[20] Qi M, Dai D, Liu J, et al. Aim2 promotes the development of non-small cell lung cancer by modulating mitochondrial dynamics [J]. Oncogene, 2020,39(13):2707-2723.
[21] Rehman J, Zhang HJ, Toth PT, et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer [J]. FASEB J, 2012,26(5):2175-2186.
[22] Tailor D, Hahm ER, Kale RK, et al. Sodium butyrate induces drp1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells [J]. Mitochondrion, 2014,16(55-64.
[23] Liu T, Yu R, Jin SB, et al. The mitochondrial elongation factors mief1 and mief2 exert partially distinct functions in mitochondrial dynamics [J]. Exp Cell Res, 2013,319(18):2893-2904.
[24] Nagy A, Lanczky A, Menyhart O, et al. Validation of mirna prognostic power in hepatocellular carcinoma using expression data of independent datasets [J]. Scientific reports, 2018,8(1):9227.
[25] Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer [J]. Nat Rev Mol Cell Biol, 2019,20(2):69-84.
[26] Shirdel EA, Xie W, Mak TW, et al. Navigating the micronome--using multiple microrna prediction databases to identify signalling pathway-associated micrornas [J]. PloS one, 2011,6(2):e17429.
[27] Buck MD, O'Sullivan D, Klein Geltink RI, et al. Mitochondrial dynamics controls t cell fate through metabolic programming [J]. Cell, 2016,166(1):63-76.
[28] Lunt SY, Vander Heiden MG. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation [J]. Annual review of cell and developmental biology, 2011,27(441-464.
[29] Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics [J]. Nature reviews Molecular cell biology, 2020,21(4):204-224.
[30] Kim HK, Noh YH, Nilius B, et al. Current and upcoming mitochondrial targets for cancer therapy [J]. Semin Cancer Biol, 2017,47(154-167.
[31] Yu L, Xiao Z, Tu H, et al. The expression and prognostic significance of drp1 in lung cancer: A bioinformatics analysis and immunohistochemistry [J]. Medicine (Baltimore), 2019,98(48):e18228.
[32] Kim YY, Yun SH, Yun J. Downregulation of drp1, a fission regulator, is associated with human lung and colon cancers [J]. Acta Biochim Biophys Sin (Shanghai), 2018,50(2):209-215.
[33] Hu J, Meng Y, Zhang Z, et al. March5 rna promotes autophagy, migration, and invasion of ovarian cancer cells [J]. Autophagy, 2017,13(2):333-344.
[34] Tang Q, Liu W, Zhang Q, et al. Dynamin-related protein 1-mediated mitochondrial fission contributes to ir-783-induced apoptosis in human breast cancer cells [J]. J Cell Mol Med, 2018,22(9):4474-4485.
[35] Zhang Y, Li H, Chang H, et al. Mtp18 overexpression contributes to tumor growth and metastasis and associates with poor survival in hepatocellular carcinoma [J]. Cell death & disease, 2018,9(10):956.
[36] Zhang Z, Li TE, Chen M, et al. Mfn1-dependent alteration of mitochondrial dynamics drives hepatocellular carcinoma metastasis by glucose metabolic reprogramming [J]. Br J Cancer, 2020,122(2):209-220.
[37] Wang J, Wang S, Zhou J, et al. Mir-424-5p regulates cell proliferation, migration and invasion by targeting doublecortin-like kinase 1 in basal-like breast cancer [J]. Biomed Pharmacother, 2018,102(147-152.
[38] Du H, Xu Q, Xiao S, et al. Microrna-424-5p acts as a potential biomarker and inhibits proliferation and invasion in hepatocellular carcinoma by targeting trim29 [J]. Life Sci, 2019,224(1-11.
[39] Matsushita R, Seki N, Chiyomaru T, et al. Tumour-suppressive microrna-144-5p directly targets ccne1/2 as potential prognostic markers in bladder cancer [J]. Br J Cancer, 2015,113(2):282-289.
[40] Zhou Y, An Q, Guo RX, et al. Mir424-5p functions as an anti-oncogene in cervical cancer cell growth by targeting kdm5b via the notch signaling pathway [J]. Life Sci, 2017,171(9-15.
[41] Liu J, Gu Z, Tang Y, et al. Tumour-suppressive microrna-424-5p directly targets ccne1 as potential prognostic markers in epithelial ovarian cancer [J]. Cell Cycle, 2018,17(3):309-318.
[42] Mikawa T, ME LL, Takaori-Kondo A, et al. Dysregulated glycolysis as an oncogenic event [J]. Cell Mol Life Sci, 2015,72(10):1881-1892.
[43] Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative phosphorylation: A tumor's dilemma? [J]. Biochim Biophys Acta, 2011,1807(6):552-561.