Identification of reference genes and design and validation of ddPCR assays
As candidate genomic reference loci, we chose six loci with a low copy number variance in breast cancer. Thus, we excluded chromosome arms and regions that were previously shown to display frequent copy number alterations in early-stage breast cancer [21], i.e., chromosomes 1q, 8, 11, 16, 17, and 20, as well as all other regions that showed gains or losses in ≥ 10% of any of the major breast cancer subtypes. Among the remaining chromosomal regions, we attempted to manually identify one or more genes per chromosome arm. However, we failed to identify suitable genes in the low-variance parts of chromosomes 4, 5, 6, 10p, 12p, 13p, 14, 15p, 18p, 21p, 22, or Xp. In total, 23 genes on 17 different chromosome arms were identified and chosen for further evaluation (Table S3). The copy number variance among these 23 genes was analyzed in the cancer genome atlas (TCGA) breast cancer data set, revealing a frequency of copy number changes in the TCGA cohort between 0.94% and 4.1% (Table S3). LRIG2 was excluded as a reference gene in the present study due to an apparent risk that its copy number might not be independent of the studied gene, LRIG1. Thereafter, ddPCR assays for the six reference genes that showed the lowest frequency of copy number variation in the TCGA data set and, simultaneously, were located on different chromosomal arms, were designed (Table S1). Additionally, ddPCR assays for six loci along the LRIG1 gene were designed (Table S2). The performance of all twelve ddPCR assays was good, with PCR amplification efficiencies >94% (95% confidence intervals [CIs] for all assays were within 0.93<1.02) and good linearity (r2 = 1.00 for all assays) when synthetic DNA was used as the PCR template. Next, six different LRIG1/reference gene duplex assays were used to analyze the chromosomal DNA from twelve healthy individuals (Table S4). Four of the six assay pairs, i.e., LRIG1-9/GJB2, LRIG1-11/CHUK, LRIG1-7/CYP1B1, and LRIG1-12/NR5A1, showed ratios that were very close to 1 in all samples (mean ratios, ± standard deviations [SD]: 0.997, ± 0.050; 0.991, ± 0.029; 0,979, ± 0.041; and 0.968, ± 0.030, respectively). When these four assays were combined and used to determine the LRIG1 copy number among the twelve healthy individuals, the apparent mean copy number ratios were, on average, 0.984 (SD, ± 0.031; 95% CI, 0.966-1.002).
LRIG1 and ERBB2 copy number variations in breast cancer tumors
The four LRIG1/reference gene ddPCR assay pairs that had shown the ratios closest to 1 among the samples from the healthy individuals were thereafter used to analyze DNA from 34 breast cancer tumors that had been analyzed for LRIG1 copy number variations by FISH in a previous study [18]. The major clinical characteristics of these patients are presented in Table S5. To detect unbalanced gene recombination events, we analyzed the SD among the ratios for the four assays that were distributed along the LRIG1 gene. One sample showed an aberrant SD that was greater than 0.1 (SD, ± 0.431), thus representing a probable unbalanced gene recombination event. Based on this finding, we concluded that 2.9% (1/34) of the breast tumors in this series had undergone an unbalanced LRIG1 gene recombination event. We used the same cut-offs as were used by us in the paper by Thompson et al., (2014); that is, the definition of loss was an LRIG1-ratio <0.85 and of gain a ratio >1.15, that is delta +/- 0.15 around 1.00. Using these thresholds, 11.8% (4/34) of the tumors showed LRIG1 loss and 2.9% (1/34) showed LRIG1 gain. Intriguingly, only one in seven tumors that had previously shown LRIG1 gain by FISH also showed an LRIG1 gain by the ddPCR assay. In fact, there was a poor correlation between the LRIG1 copy number ratios determined by ddPCR and the LRIG1 copy numbers previously determined by FISH (linear regression, y = 1.004 + 0.100x, r2=0.009; Figure S1). Finally, we analyzed the LRIG1/CYP1B1 ratio and ERBB2/CYP1B1 ratio in 423 breast cancer tumor cytosols. Here, only a single reference gene, CYP1B1, was used, to reduce the number of ddPCR runs. Figure 1A and B show the distribution of LRIG1/CYP1B1 and ERBB2/CYP1B1 copy number ratios, respectively, among the 423 tumors. Using cut-offs <0.85 for LRIG1 loss and >1.15 for LRIG1 gain, 18.2% of the tumors showed loss and 12.5% showed gain (Table 1). The samples with ERBB2/CYP1B1 ratios ≥2 were defined as ERBB2-positive tumors (according to the guideline recommendations of the American Society of Clinical Oncology/College of American Pathologists), which corresponded to 20.6% of all tumors. Using continuous data, LRIG1 and ERBB2 copy number ratios were correlated (P = 0.016, Spearman’s ρ correlation coefficient = 0.117). Nevertheless, LRIG1 loss was more common among the ERBB2-positive (31%) than among the ERBB2-negative (14.9%) tumors (P = 0.001, Fisher’s exact test, 2-sided). The frequency of LRIG1 gains did not differ between the ERBB2-positive and ERBB2-negative tumors (P = 0.323, Fisher’s exact test, 2-sided).
We also investigated the effects of minor changes of the cut-off levels. New cut-offs were tested with delta from 0.15 up to 0.25 with step 0.01. When these alternative cut-off definitions were tested in the full model, together with the other prognostic factors, each level of LRIG-ratio was found to be non-significant. This means that the definition of loss and gain used in the manuscript was stable and not dependent on minor changes in the predefined cut-offs.
Associations between LRIG1 losses or gains and various clinical parameters
Figure 1C shows the distribution of ER levels in the cohort. The median and mean values of ER were 0.6 fmol/µg of DNA and 1.4 fmol/µg of DNA, respectively (range from 0.0 to 23.0 fmol/µg of DNA). The median and mean values of PR were 0.4 fmol/µg of DNA and 1.4 fmol/µg of DNA, respectively (range from 0.0 to 22.0 fmol/µg of DNA). LRIG1 loss was more common among steroid receptor-negative (33.3%) than among steroid receptor-positive (12.4%) tumors (P < 0.001, Fisher’s exact test, 2-sided) (Table 1). The frequency of LRIG1 gain did not differ between steroid receptor-negative and steroid receptor-positive tumors (P = 0.722, Fisher’s exact test, 2-sided). We defined four breast cancer subtypes in our study based on the data for ERBB2 copy numbers and ER and PR receptor statuses: ERBB2+, ER/PR- (i.e., ERBB2+, ER-, PR-); ERBB2+, ER/PR+ (i.e., ERBB2+, ER+, PR-; ERBB2+, ER-, PR+; or ERBB2+, ER+, PR+); ERBB2-, ER/PR+ (i.e., ERBB2-, ER+, PR-; ERBB2-, ER-, PR+; or ERBB2-, ER+, PR+); and ERBB2-, ER/PR- (i.e., ERBB2-, ER-, PR-). Figure 1D shows the LRIG1 copy number ratios among the breast cancer subtypes. LRIG1 copy number ratios were different among the groups (P < 0.001, Kruskal-Wallis test). In a pairwise comparison, LRIG1 loss was less common among the ERBB2-, ER/PR+ tumors than the other subtypes (P = 0.016, Fisher’s exact test, 2-sided). We defined disease stage from I to IV based on the TNM staging system. The TNM data for 145 patients were missing. There were only seven stage III patients, among whom only one patient had a loss and another had a gain. The frequencies of LRIG1 loss did not differ among various disease stages (Fisher’s exact test); however, LRIG1 gain was more common in stage IV than in stage I (P = 0.004, Fisher’s exact test, 2-sided). Tumor grade data were available for 363 patients. Among those tumors, LRIG1 loss was more common among grade 3 tumors than among grade 1 tumors and was more common among grade 3 tumors than among grade 2 tumors; however, there was no difference between grade 1 and grade 2 tumors (P = 0.004, P = 0.001, and P = 0.305, respectively, Fisher’s exact test, 2-sided). LRIG1 gain was equally common among the different tumor grades (Fisher’s exact test). LRIG1 copy number ratios were not correlated with tumor size. Both LRIG1 loss and gain were significantly correlated with nodal status (P = 0.002, and P = 0.035, respectively, Fisher’s exact test, 2-sided). Node-positive tumors had more LRIG1 losses or gains than node-negative tumors. The frequencies of LRIG1 losses differed among ductal, lobular, and “others” tumor types (P=0.041, Fisher’s exact test). Among the tumors with lobular cancer, no LRIG1 gain was found (0/35).
Patient survival analyses
First, we confirmed the associations between known prognostic factors and patient MFS in our cohort by applying the Mantel-Cox log-rank tests (Figure S2). Steroid receptor-negative patients had a worse MFS than steroid receptor-positive patients (P < 0.001, Figure S2A). ERBB2-amplification was strongly correlated with a worse MFS (P < 0.001, Figure S2B). Among our four defined breast cancer subtypes, the ERBB2-, ER/PR+ subtype showed the best MFS, whereas the ERBB2+, ER/PR- subtype had the worst prognosis (Figure S2C). There were significant differences in MFS between the ERBB2-, ER/PR+ subtype and all other subtypes (P = 0.002) and between the ERBB2+, ER/PR- and ERBB2-, ER/PR- subtypes (P = 0.048) (P < 0.001). Tumor grade stratified patients into three different prognostic groups, among which patients with a higher grade had a worse MFS (P = 0.014, Figure S2D). Similarly, tumor size stratified the patients into three different prognostic groups for MFS (T1 vs T2: P = 0.039; T1 vs T3: P < 0.001; T2 vs T3: P = 0.002, Figure S2E). Regarding nodal status, both N1 and N2 patients had a significantly worse MFS than node-negative (N0) patients (P < 0.001 and P = 0.001, respectively, Figure S2F). Patients with distant metastases at diagnosis (M1) showed a significantly worse survival than patients without distant metastases at diagnosis (M0) (P < 0.001, Figure S2G). Metastasis and death due to breast cancer were defined as events in the metastasis-free survival analyses. All comparisons among the disease stages were significant (P ≤ 0.001). Patients with higher stages of disease had a worse MFS than patients with lower stages (Figure S2H). We used the Mantel-Cox log-rank test to calculate the significance level of differences between OS or MFS distributions for the different LRIG1 copy number categories (loss, normal, or gain) for the whole cohort or early-stage breast cancer (stages I and II), for the entire study period, and for 5 years and 10 years (Figure 2). The overall survival analysis for all patients demonstrated that patients with LRIG1 gain, but not LRIG1 loss, had a worse prognosis than patients with a normal LRIG1 copy number (Figure 2A). However, for 5-year survival (Figure 2B) or 10-year survival (Figure 2C), patients with either LRIG1 loss or LRIG1 gain had a significantly worse OS than patients with a normal LRIG1 copy number. The overall survival analysis for early-stage patients revealed no significant differences between patients with LRIG1 loss or gain and patients with a normal LRIG1 copy number (Figure 2D). However, for 5-year OS (Figure 2E), but not for 10-year OS (Figure 2F), patients with LRIG1 loss had a significantly worse OS than patients with a normal LRIG1 copy number (Figure 2E and F). In the entire cohort, both patients with LRIG1 loss and LRIG1 gain had a significantly worse MFS than patients with a normal LRIG1 copy number (Figure 2G). This pattern was also observed for 5- and 10-year MFS (Figure 2H and I). However, for stage I and II patients, only patients with LRIG1 loss in the 5-year MFS analysis showed a significant difference compared with the patients with a normal LRIG1 copy number (Figure 2J-L). For the early-stage patients who relapsed, the median time to relapse was 43.4 months for patients with LRIG1 loss and 68.5 months for patients with a normal LRIG1 copy number. In our primary Cox regression model (Table 2), we included all the variables that significantly affected OS or MFS in our univariate analyses, i.e., tumor subtype, tumor grade, tumor size, nodal status, and patient age at diagnosis and LRIG1 loss or gain. In this model, tumor subtypes and nodal status were independent prognostic factors both for OS and MFS, whereas tumor size and age at diagnosis were independent prognostic factors for OS only. However, neither LRIG1 loss nor LRIG1 gain showed a significant independent association with patient OS or MFS. Moreover, we did statistical analyses using the cause-specific breast cancer survival estimates together with the metastasis-free survival, but the results were very similar.