[1] E. Heer, A. Harper, N. Escandor, H. Sung, V. McCormack, M.M. Fidler-Benaoudia, Global burden and trends in premenopausal and postmenopausal breast cancer: a population-based study, Lancet Glob. Health 8 (2020) e1027-e1037.
[2] Y. Li, Q. Li, H. Mo, X. Guan, S. Lin, Z. Wang, Y. Chen, Y. Zhang, D. Zhang, S. Chen, R. Cai, J. Wang, Y. Luo, Y. Fan, P. Yuan, P. Zhang, Q. Li, F. Ma, B. Xu, Incidence, risk factors and survival of patients with brain metastases at initial metastatic breast cancer diagnosis in China, Breast 55 (2021) 30-36.
[3] M. Mitsogianni, I.P. Trontzas, G. Gomatou, S. Ioannou, N.K. Syrigos, E.A. Kotteas, The changing treatment of metastatic her2-positive breast cancer, Oncol. Lett. 21 (2021) 287.
[4] T.Y. Semiglazova, S.M. Sharashenidze, S.N. Kerimova, V.V. Klimenko, V.F. Semiglazova, Current approaches to the treatment of HER2positive breast cancer with brain metastases, Tumors of Female Reproductive System 17(2021) 27-34.
[5] E. Hassan, B. Narjiss, K. Mouna, A. Abdelkader, G. Meryem, Safety of a trastuzumab biosimilar, used under routine clinical practice conditions in adult her2+ breast cancer patients in morocco, J. Clin. Oncol. 38 (2020) e13024-e13024.
[6] Y. Zhang, J. Bi, J. Huang, Y. Tang, S. Du, P. Li, Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications, Int. J. Nanomedicine 22 (2020) 6917-6934.
[7] Y. Shi, L. Du, D. Lv, Y. Li, Z. Zhang, X. Huang, H. Tang, Emerging role and therapeutic application of exosome in hepatitis virus infection and associated diseases, J. Gastroenterol. 56 (2021) 336-349.
[8] C. Han, C. Zhang, H. Wang, L. Zhao, Exosome-mediated communication between tumor cells and tumor-associated macrophages: implications for tumor microenvironment, Oncoimmunology. 10 (2021) 1887552.
[9] S. Fang, H. Tian, X. Li, D. Jin, X. Li, J. Kong, C. Yang, X. Yang, Y. Lu, Y. Luo, B. Lin, W. Niu, T. Liu, Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification, PLoS One 12 (2017) e0175050.
[10] Y. Kabe, M. Suematsu, S. Sakamoto, M. Hirai, I. Koike, T. Hishiki, A. Matsuda, Y. Hasegawa, K. Tsujita, M. Ono, N. Minegishi, A. Hozawa, Y. Murakami, M. Kubo, M. Itonaga, H. Handa, Development of a Highly Sensitive Device for Counting the Number of Disease-Specific Exosomes in Human Sera, Clin. Chem. 64 (2018) 1463-1473.
[11] H. Yan, Y. Li, S. Cheng, Y. Zeng, Advances in Analytical Technologies for Extracellular Vesicles, Anal. Chem. 93 (2021) 4739-4774.
[12] A. Bagheri Hashkavayi, B.S. Cha, E.S. Lee, S. Kim, K.S. Park, Advances in Exosome Analysis Methods with an Emphasis on Electrochemistry, Anal. Chem. 92 (2020) 12733-12740.
[13] H.M. Kim, C. Oh, J. An, S. Baek, S. Bock, J. Kim, H.S. Jung, H. Song, J.W. Kim, A. Jo, D.E. Kim, W.Y. Rho, J.Y. Jang, G.J. Cheon, H.J. Im, B.H. Jun, Multi-Quantum Dots-Embedded Silica-Encapsulated Nanoparticle-Based Lateral Flow Assay for Highly Sensitive Exosome Detection, Nanomaterials 11 (2021) 768.
[14] D.J. Timson, Myosin Va and spermine synthase: partners in exosome transport, Biosci. Rep. 39 (2019) BSR20190326.
[15] Y. Zhang, Y. Wei, P. Liu, X. Zhang, Z. Xu, X. Tan, M. Chen, J. Wang, ICP-MS and Photothermal Dual-Readout Assay for Ultrasensitive and Point-of-Care Detection of Pancreatic Cancer Exosomes, Anal. Chem. 93 (2021) 11540-11546.
[16] X.W. Zhang, M.X. Liu, M.Q. He, S. Chen, Y.L. Yu, J.H. Wang, Integral Multielement Signals by DNA-Programmed UCNP-AuNP Nanosatellite Assemblies for Ultrasensitive ICP-MS Detection of Exosomal Proteins and Cancer Identification, Anal. Chem. 93 (2021) 6437-6445.
[17] J. Lim, M. Choi, H. Lee, Y.H. Kim, J.Y. Han, E.S. Lee, Y. Cho, Direct isolation and characterization of circulating exosomes from biological samples using magnetic nanowires. J Nanobiotechnology. 17 (2019) 1.
[18] W. Chen, J. Li, X. Wei, Y. Fan, H. Qian, S. Li, Y. Xiang, S. Ding, Surface plasmon resonance biosensor using hydrogel-AuNP supramolecular spheres for determination of prostate cancer-derived exosomes, Microchim. Acta. 187 (2020) 590.
[19] W. Wu, X. Yu, J. Wu, T. Wu, Y. Fan, W. Chen, M. Zhao, H. Wu, X. Li, S. Ding, Surface plasmon resonance imaging-based biosensor for multiplex and ultrasensitive detection of NSCLC-associated exosomal miRNAs using DNA programmed heterostructure of Au-on-Ag, Biosens. Bioelectron. 175 (2021) 112835.
[20] R. Bakhtiar, Surface plasmon resonance spectroscopy: a versatile technique in a biochemist's toolbox, J. Chem. Edu. 90 (2013) 203-209.
[21] J. Das, S.O. Kelley, High-Performance Nucleic Acid Sensors for Liquid Biopsy Applications, Angew. Chem. Int. Ed. Engl. 59 (2020) 2554-2564.
[22] J. Dopie, M.J. Sweredoski, A. Moradian, A.S. Belmont, Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins, J. Cell Biol. 219 (2020) e201910207.
[23] C. Zong, F. Jiang, X. Wang, P. Li, L. Xu, H. Yang, Imaging sensor array coupled with dual-signal amplification strategy for ultrasensitive chemiluminescence immunoassay of multiple mycotoxins, Biosens. Bioelectron. 177 (2021) 112998.
[24] C. Fu, S. Jin, W. Shi, J. Oh, H. Cao, Y.M. Jung, Catalyzed Deposition of Signal Reporter for Highly Sensitive Surface-Enhanced Raman Spectroscopy Immunoassay Based on Tyramine Signal Amplification Strategy, Anal. Chem. 90 (2018) 13159-13162.
[25] X. Zhou, Y. Li, H. Wu, W. Huang, H. Ju, S. Ding, A amperometric immunosensor for sensitive detection of circulating tumor cells using a tyramide signal amplification-based signal enhancement system, Biosens. Bioelectron. 130 (2019) 88-94.
[26] B.B. Kou, Y.Q. Chai, Y.L. Yuan, R. Yuan, A DNA nanopillar as a scaffold to regulate the ratio and distance of mimic enzymes for an efficient cascade catalytic platform, Chem. Sci. 12 (2020) 407-411.
[27] Li. Jia, T. Yuan, T. Yang, L. Xu, L. Zhang, Li. Huang, W. Cheng, S. Ding, DNA-grafted hemin with preferable catalytic properties than G-quadruplex/hemin for fluorescent miRNA biosensing, Sens. Actuators, B. 271 (2018) 239-246.
[28] V. Javan Kouzegaran, K. Farhadi, M. Forough, M. Bahram, Ö. Persil Çetinkol, Highly-sensitive and fast detection of human telomeric G-Quadruplex DNA based on a hemin-conjugated fluorescent metal-organic framework platform, Biosens. Bioelectron. 178 (2021) 112999.
[29] S.Y. Digehsaraei, M. Salouti, B. Amini, S. Mahmazi, M. Kalantari, A. Kazemizadeh, J. Mehrvand, Developing a fluorescence immunosensor for detection of her2-positive breast cancer based on graphene and magnetic nanoparticles, Microchem. J. 167 (2021) 106300
[30] H. Xu, Z.P. Aguilar, L. Yang, M. Kuang, H. Duan, Y. Xiong, H. Wei, A. Wang, Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood, Biomaterials 32 (2011) 9758-9765.
[31] C. Feng, L.Y. Zhou, T. Yu, G. Xu, H.L. Tian, J.J. Xu, H.X. Xu, K.Q. Luo, A new anticancer compound, oblongifolin C, inhibits tumor growth and promotes apoptosis in HeLa cells through Bax activation, Int. J. Cancer. 131 (2012) 1445-1454.
[32] M. Dahl, P. Bouchelouche, G. Kramer-Marek, J. Capala, J. Nordling, K. Bouchelouche, Sarcosine induces increase in HER2/neu expression in androgen-dependent prostate cancer cells. Mol. Biol. Rep. 38 (2011) 4237-4243.
[33] J. Liu, L. Zhu, L. Wang, Y. Chen, B.R. Giri, J. Li, G. Cheng, Isolation and Characterization of Extracellular Vesicles from Adult Schistosoma japonicum, J. Vis. Exp. 22 (2018) 57514.
[34] M.J. Ramírez-Bajo, E. Banon-Maneus, J. Rovira, J.M. Campistol, F. Diekmann, Isolation of Extracellular Vesicles Derived from Mesenchymal Stromal Cells by Ultracentrifugation, Bio. Protoc. 10 (2020) e3860.
[35] R. Gen, M. Ortiz, C.K. O’Sullivan, Diffusion-controlled synthesis of gold nanoparticles: nano-liposomes as mass transfer barrier, J. Nanoparticle Res. 16 (2014) 1-5.
[36] P.D. Nguyen, X. Zhang, J. Su, One-Step Controlled Synthesis of Size-Tunable Toroidal Gold Particles for Biochemical Sensing, ACS Appl. Nano Mater. 2 (2019), 7839-7847.