1. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2020. CA Cancer J Clin, 2020. 70(1): p. 7-30.
2. O'Brien, K.M., et al., Intrinsic Breast Tumor Subtypes, Race, and Long-Term Survival in the Carolina Breast Cancer Study. Clinical Cancer Research, 2010. 16(24): p. 6100-6110.
3. Dent, R., et al., Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res, 2007. 13(15 Pt 1): p. 4429-34.
4. Youness, R.A., et al., The long noncoding RNA sONE represses triple-negative breast cancer aggressiveness through inducing the expression of miR-34a, miR-15a, miR-16, and let-7a. J Cell Physiol, 2019. 234(11): p. 20286-20297.
5. El-Layeh, R.A., et al., 36PStructural diversity of the cardenolide calotropin renders it as a targeted therapy for harnessing TNBC progression through tuning nitric oxide (NO) levels. Ann Oncol, 2019. 30(Supplement_1).
6. Katz, H. and M. Alsharedi, Immunotherapy in triple-negative breast cancer. Med Oncol, 2017. 35(1): p. 13.
7. Beck, K., et al., Enterocolitis in Patients With Cancer After Antibody Blockade of Cytotoxic T-Lymphocyte–Associated Antigen 4. Journal of Clinical Oncology, 2006. 24(15): p. 1-16.
8. van der Vlist, M., et al., Immune checkpoints and rheumatic diseases: what can cancer immunotherapy teach us? Nat Rev Rheumatol, 2016. 12(10): p. 593-604.
9. Abdel-Latif, M. and R.A. Youness, Why natural killer cells in triple negative breast cancer? World J Clin Oncol, 2020. 11(7): p. 464-476.
10. Awad, A.R., et al., An acetylated derivative of vitexin halts MDA-MB-231 cellular progression and improves its immunogenic profile through tuning miR- 20a-MICA/B axis. Natural product research, 2019: p. 1-5.
11. El-Layeh, R.A., et al., Structural diversity of the cardenolide calotropin renders it as a targeted therapy for harnessing TNBC progression through tuning nitric oxide (NO) levels. Annals of oncology : official journal of the European Society for Medical Oncology, 2019. 30 Suppl 1: p. i14.
12. Elkhouly, A., et al., miR-486-5p and miR-17-5p: Novel Immunomodulatory Non-coding RNAs Drawn Downstream 3′-O-Acetylvitexin in Triple Negative Breast Cancer. European Journal of Cancer, 2020. 138: p. S70.
13. Ezzat, S.M. and A. Abdel Motaal, Isolation of New Cytotoxic Metabolites from Cleome droserifolia
Growing in Egypt. Zeitschrift für Naturforschung, 2012. 67c: p. 266-274.
14. Youness, R.A., et al., A methoxylated quercetin glycoside harnesses HCC tumor progression in a TP53/miR-15/miR-16 dependent manner. Nat Prod Res, 2018: p. 1-6.
15. Sharma, S., T.K. Kelly, and P.A. Jones, Epigenetics in cancer. Carcinogenesis, 2010. 31(1): p. 27-36.
16. Nafea, H., et al., LncRNA HEIH/miR-939-5p interplay modulates triple-negative breast cancer progression through NOS2-induced nitric oxide production. J Cell Physiol, 2021. 236(7): p. 5362-5372.
17. Youness, R.A. and M.Z. Gad, Long non-coding RNAs: Functional regulatory players in breast cancer. Noncoding RNA Res, 2019. 4(1): p. 36-44.
18. ElKhouly, A.M., R.A. Youness, and M.Z. Gad, MicroRNA-486-5p and microRNA-486-3p: Multifaceted pleiotropic mediators in oncological and non-oncological conditions. Noncoding RNA Res, 2020. 5(1): p. 11-21.
19. Abdi, J., et al., Role of tumor suppressor p53 and micro-RNA interplay in multiple myeloma pathogenesis. Journal of Hematology & Oncology, 2017. 10: p. 11.
20. Hattori, H., et al., p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response. Cell Cycle, 2014. 13(16): p. 2572-2586.
21. Sandhu, R., et al., Overexpression of miR-146a in basal-like breast cancer cells confers enhanced tumorigenic potential in association with altered p53 status. Carcinogenesis, 2014. 35(11): p. 2567-75.
22. Faraoni, I., et al., miR-155 gene: A typical multifunctional microRNA. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 2009. 1792(6): p. 497-505.
23. Wang, H., et al., Regulation of Human Natural Killer Cell IFN-γ Production by MicroRNA-146a via Targeting the NF-κB Signaling Pathway. Front Immunol, 2018. 9: p. 293.
24. Hargreaves, B.K.V., et al. Highly efficient serum-free manipulation of miRNA in human NK cells without loss of viability or phenotypic alterations is accomplished with TransIT-TKO. PloS one, 2020. 15, e0231664 DOI: 10.1371/journal.pone.0231664.
25. Youness, R.A., et al., A novel role of sONE/NOS3/NO signaling cascade in mediating hydrogen sulphide bilateral effects on triple negative breast cancer progression. Nitric Oxide, 2018. 80: p. 12-23.
26. Youness, R.A., et al., Contradicting interplay between insulin-like growth factor-1 and miR-486-5p in primary NK cells and hepatoma cell lines with a contemporary inhibitory impact on HCC tumor progression. Growth Factors, 2016. 34(3-4): p. 128-40.
27. Awad, A.R., et al., An acetylated derivative of vitexin halts MDA-MB-231 cellular progression and improves its immunogenic profile through tuning miR- 20a-MICA/B axis. Nat Prod Res, 2021. 35(18): p. 3126-3130.
28. Mekky, R.Y., et al., Epigallocatechin gallate (EGCG) and miR-548m reduce HCV entry through repression of CD81 receptor in HCV cell models. Arch Virol, 2019. 164(6): p. 1587-1595.
29. Ahmed Youness, R., et al., A methoxylated quercetin glycoside harnesses HCC tumor progression in a TP53/miR-15/miR-16 dependent manner. Nat Prod Res, 2020. 34(10): p. 1475-1480.
30. Youness, R.A., et al., MicroRNA-486-5p enhances hepatocellular carcinoma tumor suppression through repression of IGF-1R and its downstream mTOR, STAT3 and c-Myc. Oncol Lett, 2016. 12(4): p. 2567-2573.
31. Youssef, S.S., et al., PNPLA3 and IL 28B signature for predicting susceptibility to chronic hepatitis C infection and fibrosis progression. Arch Physiol Biochem, 2019: p. 1-7.
32. El Din, G.S., et al., miRNA-506-3p Directly Regulates rs10754339 (A/G) in the Immune Checkpoint Protein B7-H4 in Breast Cancer. Microrna, 2020. 9(5): p. 346-353.
33. Rahmoon, M.A., et al., MiR-615-5p depresses natural killer cells cytotoxicity through repressing IGF-1R in hepatocellular carcinoma patients. Growth Factors, 2017. 35(2-3): p. 76-87.
34. Youness, R.A., et al., Targeting hydrogen sulphide signaling in breast cancer. J Adv Res, 2021. 27: p. 177-190.
35. Abdallah, R.M., et al., Hindering The Synchronization Between Mir-486-5p And H19 Lncrna By Hesperetin Halts Breast Cancer Aggressiveness Through Tuning ICAM-1. Anticancer Agents Med Chem, 2021.
36. Zhang, T., et al., MALAT1 Activates the P53 Signaling Pathway by Regulating MDM2 to Promote Ischemic Stroke. Cell Physiol Biochem, 2018. 50(6): p. 2216-2228.
37. Petitjean, A., et al., TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene, 2007. 26(15): p. 2157-65.
38. Horigome, E., et al., Mutant TP53 modulates metastasis of triple negative breast cancer through adenosine A2b receptor signaling. Oncotarget, 2018. 9(77): p. 34554-34566.
39. Li, J.P., et al., Association of p53 expression with poor prognosis in patients with triple-negative breast invasive ductal carcinoma. Medicine (Baltimore), 2019. 98(18): p. e15449.
40. Grespi, F., et al., Differential regulated microRNA by wild type and mutant p53 in induced pluripotent stem cells. Cell Death & Disease, 2016. 7(12): p. e2567-e2567.
41. Dai, R., et al., Suppression of LPS-induced Interferon-γ and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs: a novel mechanism of immune modulation. Blood, 2008. 112(12): p. 4591-4597.
42. Xu, C., et al., miR-155 regulates immune modulatory properties of mesenchymal stem cells by targeting TAK1-binding protein 2. The Journal of biological chemistry, 2013. 288(16): p. 11074-11079.
43. Jadeski, L.C., C. Chakraborty, and P.K. Lala, Role of nitric oxide in tumour progression with special reference to a murine breast cancer model. Canadian Journal of Physiology and Pharmacology, 2002. 80(2): p. 125-135.
44. Walsh, E.M., et al., Review of Triple Negative Breast Cancer and the Impact of Inducible Nitric Oxide Synthase on Tumor Biology and Patient Outcomes. Critical reviews in oncogenesis, 2016. 21(5-6): p. 333-351.
45. Garrido, P., et al., Impact of inducible nitric oxide synthase (iNOS) expression on triple negative breast cancer outcome and activation of EGFR and ERK signaling pathways. Oncotarget, 2017. 8(46): p. 80568-80588.
46. Lu, C., et al., miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood, 2011. 117(16): p. 4293-303.
47. Cerutti, C., et al., MicroRNA-155 contributes to shear-resistant leukocyte adhesion to human brain endothelium in vitro. Fluids Barriers CNS, 2016. 13(1): p. 8.
48. Abdel-Latif, M., et al., 23P - A new quercetin glycoside enhances TNBC immunological profile through TP53/miR-155/MICA/ULBP2. Annals of Oncology, 2019. 30: p. vii7-vii8.
49. de Kruijf, E.M., et al., NKG2D ligand tumor expression and association with clinical outcome in early breast cancer patients: an observational study. BMC Cancer, 2012. 12: p. 24.
50. Llanes-Fernández, L., et al., Relationship between IL-10 and tumor markers in breast cancer patients. Breast, 2006. 15(4): p. 482-9.
51. Chavey, C., et al., Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res, 2007. 9(1): p. R15.
52. Jenkins, R.W., D.A. Barbie, and K.T. Flaherty, Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer, 2018. 118(1): p. 9-16.
53. O'Donnell, J.S., et al., Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treatment Reviews, 2017. 52: p. 71-81.
54. Downey, S.G., et al., Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin Cancer Res, 2007. 13(22 Pt 1): p. 6681-8.
55. Pedersen, I.M., et al., Onco-miR-155 targets SHIP1 to promote TNFα-dependent growth of B cell lymphomas. 2009. 1(5): p. 288-295.
56. Bala, S., et al., Up-regulation of MicroRNA-155 in Macrophages Contributes to Increased Tumor Necrosis Factor alpha (TNF alpha) Production via Increased mRNA Half-life in Alcoholic Liver Disease. Journal of Biological Chemistry, 2011. 286(2): p. 1436-1444.
57. Pileczki, V., et al., TNF-α gene knockout in triple negative breast cancer cell line induces apoptosis. Int J Mol Sci, 2012. 14(1): p. 411-20.
58. Zhu, J., et al., TNF-α mRNA is negatively regulated by microRNA-181a-5p in maturation of dendritic cells induced by high mobility group box-1 protein. Scientific Reports, 2017. 7(1): p. 12239.
59. Zhu, T.T., et al., MicroRNA-140-5p targeting tumor necrosis factor-α prevents pulmonary arterial hypertension. J Cell Physiol, 2019. 234(6): p. 9535-9550.