Alifano M, Alifano P, Forgez P, Iannelli A (2020) Renin-angiotensin system at the heart of COVID-19 pandemic. Biochimie. https://doi.org/10.1016/j.biochi.2020.04.008
Almendros A, Gascoigne E (2020) Can companion animals become infected with Covid-19? Veterinary Record
Ayati N, Saiyarsarai P, Nikfar S (2020) Short and long term impacts of COVID-19 on the pharmaceutical sector. DARU, Journal of Pharmaceutical Sciences. https://doi.org/10.1007/s40199-020-00358-5
Baloch S, Baloch MA, Zheng T, Pei X (2020) The coronavirus disease 2019 (COVID-19) pandemic. Tohoku Journal of Experimental Medicine
Banerjee A, Kulcsar K, Misra V, et al (2019) Bats and coronaviruses. Viruses
Beard H, Cholleti A, Pearlman D, et al (2013) Applying physics-based scoring to calculate free energies of binding for single amino acid mutations in protein-protein complexes. PLoS One 8:e82849. https://doi.org/10.1371/journal.pone.0082849
Bhowmik D, Pal S, Lahiri A, et al (2020) Emergence of multiple variants of SARS-CoV-2 with signature structural changes. bioRxiv. https://doi.org/10.1101/2020.04.26.062471
Brooke GN, Prischi F (2020) Structural and functional modelling of SARS-CoV-2 entry in animal models. Sci Rep 10:15917. https://doi.org/10.1038/s41598-020-72528-z
Cevik M, Bamford CGG, Ho A (2020) COVID-19 pandemic—a focused review for clinicians. Clinical Microbiology and Infection
Chen Y, Liu Q, Guo D (2020) Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology
Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. https://doi.org/10.1002/pro.5560020916
Contini C, Nuzzo M Di, Barp N, et al (2020) The novel zoonotic COVID-19 pandemic: An expected global health concern. Journal of Infection in Developing Countries. https://doi.org/10.3855/jidc.12671
Das P, Choudhuri T (2020) Decoding the global outbreak of COVID-19: the nature is behind the scene. VirusDisease. https://doi.org/10.1007/s13337-020-00605-y
Donoghue M, Hsieh F, Baronas E, et al (2000a) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation research. https://doi.org/10.1161/01.res.87.5.e1
Donoghue M, Hsieh F, Baronas E, et al (2000b) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation research. https://doi.org/10.1161/01.res.87.5.e1
Gabutti G, d’Anchera E, Sandri F, et al (2020) Coronavirus: Update Related to the Current Outbreak of COVID-19. Infectious Diseases and Therapy
Hamming I, Timens W, Bulthuis MLC, et al (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Journal of Pathology. https://doi.org/10.1002/path.1570
Han DP, Lohani M, Cho MW (2007) Specific Asparagine-Linked Glycosylation Sites Are Critical for DC-SIGN- and L-SIGN-Mediated Severe Acute Respiratory Syndrome Coronavirus Entry. Journal of Virology. https://doi.org/10.1128/jvi.00315-07
Hasöksüz M, Kiliç S, Saraç F (2020) Coronaviruses and sars-cov-2. Turkish Journal of Medical Sciences
Hoffmann M, Kleine-Weber H, Schroeder S, et al (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181:271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
Hofmann H, Pöhlmann S (2004) Cellular entry of the SARS coronavirus. Trends in Microbiology
Jiang S, Hillyer C, Du L (2020) Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Trends in Immunology
Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K (2020) COVID-19 (Novel Coronavirus 2019) - recent trends. European Review for Medical and Pharmacological Sciences. https://doi.org/10.26355/eurrev_202002_20378
Lam SD, Bordin N, Waman VP, et al (2020) SARS-CoV-2 spike protein predicted to form stable complexes with host receptor protein orthologues from mammals. bioRxiv
Lan J, Ge J, Yu J, et al (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. https://doi.org/10.1038/s41586-020-2180-5
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26:283–291. https://doi.org/10.1107/S0021889892009944
Leist SR, Schäfer A, Martinez DR (2020) Cell and animal models of SARS-CoV-2 pathogenesis and immunity. Dis Model Mech 13:. https://doi.org/10.1242/dmm.046581
Letko M, Marzi A, Munster V (2020) Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology. https://doi.org/10.1038/s41564-020-0688-y
Levitt M, Gerstein M (1998) A unified statistical framework for sequence comparison and structure comparison. Proc Natl Acad Sci U S A 95:5913–5920. https://doi.org/10.1073/pnas.95.11.5913
Li R, Pei S, Chen B, et al (2020) Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science. https://doi.org/10.1126/science.abb3221
Mallapaty S (2020) What’s the risk that animals will spread the coronavirus? Nature. https://doi.org/10.1038/d41586-020-01574-4
Mousavizadeh L, Ghasemi S (2020) Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and Infection
Naz F, Mashkoor M, Sharma P, et al (2020) Drug Repurposing Approach to Target FtsZ Cell Division Protein From Salmonella Typhi. In: International journal of biological macromolecules. https://pubmed.ncbi.nlm.nih.gov/32417543/. Accessed 24 Jun 2020
Ohtsubo K, Marth JD (2006) Glycosylation in Cellular Mechanisms of Health and Disease. Cell
Roy S, Jaiswar A, Sarkar R (2020) Dynamic Asymmetry Exposes 2019-nCoV Prefusion Spike. The journal of physical chemistry letters. https://doi.org/10.1021/acs.jpclett.0c01431
Schwarz F, Aebi M (2011a) Mechanisms and principles of N-linked protein glycosylation. Current Opinion in Structural Biology
Schwarz F, Aebi M (2011b) Mechanisms and principles of N-linked protein glycosylation. Current Opinion in Structural Biology. https://doi.org/10.1016/j.sbi.2011.08.005
Shajahan A, Archer-Hartmann S, Supekar NT, et al (2020a) Comprehensive characterization of N- and O- glycosylation of SARS-CoV-2 human receptor angiotensin converting enzyme 2. bioRxiv. https://doi.org/10.1101/2020.05.01.071688
Shajahan A, Archer-Hartmann S, Supekar NT, et al (2020b) Comprehensive characterization of N- and O- glycosylation of SARS-CoV-2 human receptor angiotensin converting enzyme 2. bioRxiv. https://doi.org/10.1101/2020.05.01.071688
Shang J, Wan Y, Luo C, et al (2020) Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.2003138117
Shental-Bechor D, Levy Y (2008) Effect of glycosylation on protein folding: A close look at thermodynamic stabilization. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.0801340105
Shi J, Wen Z, Zhong G, et al (2020) Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. https://doi.org/10.1126/science.abb7015
Shivakumar D, Williams J, Wu Y, et al (2010) Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J Chem Theory Comput 6:1509–1519. https://doi.org/10.1021/ct900587b
Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol 1079:105–116. https://doi.org/10.1007/978-1-62703-646-7_6
Singhal T (2020) A Review of Coronavirus Disease-2019 (COVID-19). Indian Journal of Pediatrics
Stout AE, André NM, Jaimes JA, et al (2020) Coronaviruses in cats and other companion animals: Where does SARS-CoV-2/COVID-19 fit? Vet Microbiol 247:108777. https://doi.org/10.1016/j.vetmic.2020.108777
Tay MZ, Poh CM, Rénia L, et al (2020) The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology. https://doi.org/10.1038/s41577-020-0311-8
Tipnis SR, Hooper NM, Hyde R, et al (2000) A human homolog of angiotensin-converting enzyme: Cloning and functional expression as a captopril-insensitive carboxypeptidase. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M002615200
Towler P, Staker B, Prasad SG, et al (2004) ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem 279:17996–18007. https://doi.org/10.1074/jbc.M311191200
Turner AJ, Hiscox JA, Hooper NM (2004) ACE2: From vasopeptidase to SARS virus receptor. Trends in Pharmacological Sciences
Walls AC, Park YJ, Tortorici MA, et al (2020) Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. https://doi.org/10.1016/j.cell.2020.02.058
Warner FJ, Smith AI, Hooper NM, Turner AJ (2004) Angiotensin-converting enzyme-2: A molecular and cellular perspective. Cellular and Molecular Life Sciences
Waterhouse A, Bertoni M, Bienert S, et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. https://doi.org/10.1093/nar/gky427
Yadav P, Kumar M, Bansal R, et al (2019) Structure model of ferrochelatase from Salmonella Typhi elucidating metalation mechanism. Int J Biol Macromol 127:585–593. https://doi.org/10.1016/j.ijbiomac.2019.01.066
Yan R, Zhang Y, Li Y, et al (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. https://doi.org/10.1126/science.abb2762
Ye ZW, Yuan S, Yuen KS, et al (2020) Zoonotic origins of human coronaviruses. International Journal of Biological Sciences
Zhai X, Sun J, Yan Z, et al (2020) Comparison of Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Binding to ACE2 Receptors from Human, Pets, Farm Animals, and Putative Intermediate Hosts. Journal of Virology. https://doi.org/10.1128/jvi.00831-20
Zhang T, Wu Q, Zhang Z (2020a) Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Current Biology. https://doi.org/10.1016/j.cub.2020.03.022
Zhang T, Wu Q, Zhang Z (2020b) Probable Pangolin Origin of 2019-nCoV Associated with Outbreak of COVID-19. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3542586
Zhao P, Praissman JL, Grant OC, et al (2020a) Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host and Microbe. https://doi.org/10.1016/j.chom.2020.08.004
Zhao WM, Song SH, Chen ML, et al (2020b) The 2019 novel coronavirus resource. Yi chuan Hereditas. https://doi.org/10.16288/j.yczz.20-030