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Abstract 

A five-level atomic system is proposed in vicinity of a two-dimensional (2D) plasmonic 

nanostructure with application in atom-photon entanglement. The behavior of the atom-photon 

entanglement is discussed with and without a control laser field. The amount of atom-photon 

entanglement is controlled by the quantum interference created by the plasmonic nanostructure. 

Thus, the degree of atom-photon entanglement is affected by the atomic distance from the 

plasmonic nanostructure. In the presence of a control field, maximum entanglement between 

the atom and its spontaneous emission field is observed. 

Keywords: Atom-photon entanglement, plasmonic nanostructure, quantum interference, 

quantum entropy, reduced density operator. 

1. Introduction 

The light-matter coherent interaction leads to an important phenomenon in quantum science 

such as quantum entanglement1,2. Quantum entanglement has widely been proposed due to its 

applications in quantum computing and quantum information technology3,4. Some important 

applications of entangled particles are their use in quantum algorithms5, quantum 

cryptography6, quantum networks7,8, and teleportation9. In last two decades, different 

approaches were presented to generate entangled particles10,11. Lately, matter-field 

entanglement has reached specific regard, because photons are used to carry the quantum 

information, and atoms are used to store it12. Many proposals were presented to produce the 

entanglement between quantum systems and their spontaneous emission field. Some of these 

articles are including the generation of entanglement between the atom and its spontaneous 

emission field via quantum entropy under the EIT conditions13–15. Time dependent behavior of 
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the atom-photon entanglement is discussed when a four-level atom is embedded near the band 

edge of a photonic crystal16. The time evolution of the quantum entropy in a triple quantum dot 

molecule is controlled by the gate voltage and the rate of an incoherent pump field17. It was 

also shown that atom-photon entanglement can be controlled by the relative phase of the 

applied fields18, and the quantum interference parameter19,20. Basically, atom-photon 

entanglement can be achieved by the atomic coherence that is created by the coherent laser 

fields. Instead, when the system interacts with the surrounding reservoirs, due to the 

decoherence processes, the degree of entanglement and the information degrades. Spontaneous 

emission is an important phenomenon that leads to disentanglement of the two entangled states. 

However, spontaneous emission is an incoherent process, which can be controlled by placing 

the emitters in frequency-dependent reservoirs21, near the edges of photonic bandgaps 

(PBG)22,23, or in a microwave cavity24. The spectrum of the spontaneous emission strongly 

depends on the energy levels structure and the generated quantum coherence25. Therefore, due 

to quantum interference mechanism, the rate of spontaneous emission may be decreased or 

even quenched. 

On the other hand, the optical properties of the quantum emitters, i.e. atoms or semiconductor 

quantum dots, can significantly be modified when quantum systems are placed near the 

plasmonic nanostructures26. In vicinity of plasmonic nanostructures, the strong interaction 

between the electromagnetic field and the quantum emitters can be occurred27. Therefore, the 

optical response of the quantum emitter can be controlled using a hybrid quantum-plasmonic 

system. Quenching or enhancement of the spontaneous emission 28–30, gain without population 

inversion31, enhancement of nonlinear optical response32–34 are described in hybrid plasmonic 

nanostructure. The effect of plasmonic nanostructure on optical grating 35, probe field 

absorption36, and slow-light propagation 37 was also proposed. 

Now, we study the entanglement of a five-level quantum emitter coupled to a plasmonic 

nanostructure, namely a periodic 2D array of metal-coated dielectric nanospheres, and its 

spontaneous emission field. The combined density matrix approach and ab initio 

electromagnetic calculations are employed to discuss the response of the system. Steady-state 

population distribution of the various levels of the quantum emitter with and without the control 

laser field are investigated. We show that the population distribution and consequently atom-

photon entanglement is strongly affected by the distance of quantum emitter from the 

plasmonic nanostructure. We show that the maximum value of entanglement can be achieved 

at a certain distance from the plasmonic nanostructure. We also prove that the degree of 



entanglement can effectively be controlled by the quantum interference between decay 

processes due to the proximity of the plasmonic nanostructure.  

In the following discussion; we first present the coherently driven atomic model. Then, we 

obtain the relevant density matrix equations in the presence of the plasmonic nanostructure, 

and present the reduced entropy for calculating the atom-photon entanglement. In section 3, 

some numerical results of the atom-photon entanglement are presented. Finally, the paper is 

concluded in section 4. 

2. Model and equations 

Consider a five-level atomic system with two lower levels |1⟩ and |2⟩, two closely lying middle 

Zeeman sublevels |3⟩ and |4⟩, and an additional higher-level |5⟩ as depicted in Fig. 1. Assume 

this atomic system is fixed at a distance 𝑑 from the plasmonic nanostructure’s surface, which 

is located in vacuum space (Fig. 2). The dipole moment operator is written as 

 
𝜇̂ = 𝜇⃗′′(|5⟩⟨3|𝜀−̂ + |5⟩⟨4|𝜀+̂) + 𝜇′(|3⟩⟨1|𝜀−̂ + |4⟩⟨1|𝜀+̂)+ 𝜇(|3⟩⟨2|𝜀−̂ + |4⟩⟨2|𝜀+̂) + 𝐻. 𝑐. (1) 

 

where 𝜀+̂ and 𝜀−̂ describe the right- and left-rotating unit vectors, which are defined as  

 𝜀±̂ = (𝐞𝑧 ± 𝑖𝐞𝑥) √2⁄ . (2) 

 

Here, 𝐞𝑧 and 𝐞𝑥 are unit vectors in 𝑧 and 𝑥 directions. In addition,  𝜇, 𝜇′ and 𝜇′′ are assumed 

to be real. 

Two linearly polarized continuous electric fields as 𝐸⃗⃗(𝑡) = 𝐞𝑧𝐸0 cos(𝜈𝑡) and 𝐸⃗⃗′(𝑡) =𝐞𝑧𝐸0′ cos(𝜈′𝑡) are applied to the quantum system, where 𝐸0 (𝐸0′ ) and 𝜈 (𝜈′) are the amplitude 

and angular frequency of the electric field, respectively. The electric field 𝐸⃗⃗(𝑡) drives transition |1⟩ ↔ |𝑖⟩ (𝑖 = 3, 4), while control electric field 𝐸⃗⃗′(𝑡) couples level |5⟩ to Zeeman sublevels |3⟩ and |4⟩. The atom-field interaction in dipole and rotating-wave approximation is described 

by Hamiltonian  



 

𝐻 = − 12 ℏΩ𝑒𝑖(𝛿−12𝜔43)𝑡|3⟩⟨1| − 12 ℏΩ𝑒𝑖(𝛿+12𝜔43)𝑡|4⟩⟨1|
− 12 ℏΩ′𝑒𝑖(𝛿′+12𝜔43)𝑡|5⟩⟨3| − 12 ℏΩ′𝑒𝑖(𝛿′+12𝜔43)𝑡|5⟩⟨4| + 𝐻. 𝑐. (3) 

 

Here, 𝛿 (𝛿′) is the detuning between respected energy levels and applied fields, which is 

measured from average transition frequencies of level |3⟩ and level |4⟩ with level |1⟩ (|5⟩). So, 

detunings define as 𝛿 = 𝜈 − (𝜔31 + 12 𝜔43) = 𝜈 − (𝜔41 − 12 𝜔43), and 𝛿′ = 𝜈′ − (𝜔54 +12 𝜔43) = 𝜈′ − (𝜔53 − 12 𝜔43), where, 𝜔𝑖𝑗 are transition frequencies between the energy level |𝑖⟩ and level |𝑗⟩. The parameters Ω = 𝜇𝐸0 √2ℏ⁄  and Ω′ = 𝜇′′𝐸0′ √2ℏ⁄  are the corresponding 

Rabi-frequencies.  

The spontaneous emission rates from the excited level |5⟩ to the other lower levels are denoted 

by 2𝛾5𝑖 (𝑖 = 1, 2, 3, 4). The transitions from level |5⟩ to level |3⟩ and level |4⟩ are influenced 

by the interaction of the quantum system with free-space vacuum modes, so these transitions 

are not affected by the plasmonic nanostructure. The Zeeman sublevels |3⟩ and |4⟩ 
spontaneously decay to level |1⟩ (|2⟩) with decay rates 2𝛾3′  (2𝛾3) and 2𝛾4′ (2𝛾4), respectively. 

Moreover, we assume the transitions from level |3⟩ and level |4⟩ to level |2⟩ spectrally be 

located in the surface-plasmon band of the plasmonic nanostructure, while the transitions from 

level |3⟩ and level |4⟩ to level |1⟩ are also far from the surface-plasmon bands.  

For simplicity, we assume 𝜔43 to be relatively small that equals to a few Γ0 (decay rate of level |3⟩ and level |4⟩ to level |2⟩ in the vacuum). Later, the energy of both middle levels is taken to 

be the same; thus decay rates from level |3⟩ and level |4⟩ to level |1⟩ are coupled by the same 

vacuum mods. Therefore, these transitions are free-space spontaneous decay. In addition, 

spontaneous decay from level |3⟩ and level |4⟩ to level |2⟩ are coupled by the same mods that 

affected by plasmonic nanostructure.  Then, we can assume 𝛾3 = 𝛾4 = 𝛾 and 𝛾3′ = 𝛾4′ = 𝛾′ 38. 

Considering the Hamiltonian described in equation (3), the density matrix equations of motion 

in rotating frame are obtained as 

 

𝜌̇11 = 2𝛾′′𝜌22 + 2𝛾′(𝜌33 + 𝜌44) + 2𝛾51𝜌55 − 12 𝑖Ω(𝜌13 + 𝜌14) +12 𝑖Ω(𝜌31 + 𝜌41), 𝜌̇22 = 2𝛾52𝜌55 − 2𝛾′′𝜌22 + 2𝛾(𝜌33 + 𝜌44) + 2𝜅(𝜌34 + 𝜌43), 

(4) 



𝜌̇33 = 2𝛾53𝜌55 − 2(𝛾′ + 𝛾)𝜌33 − 𝜅(𝜌34 + 𝜌43) + 12 𝑖Ω(𝜌13 + 𝜌31) −12 𝑖Ω′(𝜌35 − 𝜌53), 𝜌̇44 = 2𝛾54𝜌55 − 2(𝛾′ + 𝛾)𝜌44 − 𝜅(𝜌34 + 𝜌43) + 12 𝑖Ω(𝜌14 − 𝜌41) −12 𝑖Ω′(𝜌45 − 𝜌54), 𝜌̇55 = −2(𝛾51 + 𝛾52 + 𝛾53 + 𝛾54)𝜌55 + 12 𝑖Ω′(𝜌35 + 𝜌45 − 𝜌53 − 𝜌54), 𝜌̇21 = −𝛾′′𝜌21 − 12 𝑖Ω(𝜌34 + 𝜌35), 𝜌̇31 = −(𝑖𝛿 + (𝛾′ + 𝛾))𝜌31 − 𝜅𝜌41 + 12 𝑖Ω(𝜌11 − 𝜌33 − 𝜌34) + 12 𝑖Ω′𝜌51, 𝜌̇32 = 12 𝑖Ω𝜌12 − (𝑖𝛿 + (𝛾′′ + 𝛾′ + 𝛾))𝜌32 − 𝜅𝜌42 + 12 𝑖Ω′𝜌52, 𝜌̇41 = −(𝑖𝛿 + (𝛾′ + 𝛾))𝜌41 − 𝜅𝜌31 + 12 𝑖Ω(𝜌11 − 𝜌43 − 𝜌44) + 12 𝑖Ω′𝜌51, 𝜌̇42 = −(𝑖𝛿 + (𝛾′′ + 𝛾′ + 𝛾))𝜌42 − 𝜅𝜌32 + 12 𝑖Ω𝜌12 + 12 𝑖Ω′𝜌52, 𝜌̇43 = −2(𝛾′ + 𝛾)𝜌43 − 𝜅(𝜌33 + 𝜌44) + 12 𝑖Ω(𝜌13 − 𝜌41), − 12 𝑖Ω′(𝜌45 −𝜌53), 𝜌̇51 = −(𝑖(𝛿′ + 𝛿) + (𝛾51 + 𝛾52 + 𝛾53 + 𝛾54))𝜌51 + 12 𝑖Ω′(𝜌31 + 𝜌41) −12 𝑖Ω(𝜌53 + 𝜌54), 𝜌̇52 = −(𝑖(𝛿′ + 𝛿) + (𝛾′′ + 𝛾51 + 𝛾52 + 𝛾53 + 𝛾54))𝜌52 + 12 𝑖Ω′(𝜌32 +𝜌42), 𝜌̇53 = −(𝑖𝛿′ + (𝛾′ + 𝛾 + 𝛾51 + 𝛾52 + 𝛾53 + 𝛾54))𝜌53 − 𝜅𝜌54 +12 𝑖Ω′(𝜌33 + 𝜌43 − 𝜌55) − 12 𝑖Ω𝜌51, 𝜌̇54 = −(𝑖𝛿′ + (𝛾′ + 𝛾 + 𝛾51 + 𝛾52 + 𝛾53 + 𝛾54))𝜌54 − 𝜅𝜌53 +12 𝑖Ω′(𝜌34 + 𝜌44 − 𝜌55) − 12 𝑖Ω𝜌51, 

 

where 𝜅 represents the coupling coefficient between level |3⟩ and level |4⟩. This coefficient is 

due to anisotropic vacuum influence on spontaneous emission due to the existence of plasmonic 

nanostructure (anisotropic Purcell effect) 39, which arises due to the quantum interference 

mechanism 40. The values of 𝛾 and 𝜅 can be obtained by the dyadic electromagnetic Green’s 

tensor 𝐆(𝑟, 𝑟; 𝜔) 41, as 

 𝛾 = 𝜇0𝜇2𝜔22ℏ 𝜀−̂. 𝐼𝑚[𝐆(𝑟, 𝑟; 𝜔)]. 𝜀+̂, (5-a) 



𝜅 = 𝜇0𝜇2𝜔22ℏ 𝜀+̂. 𝐼𝑚[𝐆(𝑟, 𝑟; 𝜔)]. 𝜀+̂, (5-b) 

 

where 𝜔 = (𝜔4 + 𝜔3) 2⁄ − 𝜔2, 𝑟 displays the position of the atomic system, and 𝜇0 refers to 

the permeability of vacuum space. Due to the equations (5), we can write the values of 𝛾 and 𝜅 42, as 

 
𝛾 = 12 𝜇2𝜔02𝐼𝑚[𝐺⊥(𝑟, 𝑟; 𝜔) + 𝐺∥(𝑟, 𝑟; 𝜔)] = 12 (Γ⊥ + Γ∥), (6-a) 𝜅 = 12 𝜇2𝜔02𝐼𝑚[𝐺⊥(𝑟, 𝑟; 𝜔) − 𝐺∥(𝑟, 𝑟; 𝜔)] = 12 (Γ⊥ − Γ∥). (6-b) 

 

Moreover, 𝐺⊥(𝑟, 𝑟; 𝜔) = 𝐺𝑧𝑧(𝑟, 𝑟; 𝜔), 𝐺∥(𝑟, 𝑟; 𝜔) = 𝐺𝑥𝑥(𝑟, 𝑟; 𝜔) indicates the elements of the 

electromagnetic wave Green’s tensor. Here, index ∥ (⊥) denotes the dipole oriented parallel 

(normal) along the x-axis (z-axis) to the surface of the plasmonic nanostructure38. Therefore, 

we express the spontaneous emission rates in parallel and normal directions to the surface of 

the plasmonic nanostructure as 

 
Γ∥ = 𝜇0𝜇2𝜔2𝐼𝑚[𝐺∥(𝑟, 𝑟; 𝜔)] ℏ⁄ , (7-a) Γ⊥ = 𝜇0𝜇2𝜔2𝐼𝑚[𝐺⊥(𝑟, 𝑟; 𝜔)] ℏ⁄ . (7-b) 

 

Now, we introduce the quantum interference parameter as 𝑝 = Γ⊥−Γ∥Γ⊥+Γ∥ = 𝜅𝛾 that arises due to 

existence of plasmonic nanostructure. Spontaneous emission may be enhanced or even 

quenched via the quantum interfere mechanism depending on Γ∥ and Γ⊥. When quantum system 

is very far from the plasmonic nanostructure, i.e. Γ⊥ = Γ∥ and 𝜅 = 0, no quantum interference 

appears37,43,44. However, if the emitter is placed near the plasmonic nanostructure, i.e. Γ∥ = 0, 

the parameter 𝜅 is identical and quantum interference is maximum. 

Here, we propose a 2D array of plasmonic nanostructures, where metal-coated silica 

nanospheres are connected to each other (Fig. 2). The shell has a frequency-dependent 

dielectric function represented by a Drude-model electric permittivity 

 𝜖(𝜔) = 1 − 𝜔𝑝2𝜔(𝜔+𝑖 𝜏⁄ ) , (8) 

 



where 𝜏 demonstrates the relaxation time for electrons of metal conduction-band, and 𝜔𝑝 

represents the plasma frequency of the bulk. The plasma frequency for silver metal is ℏ𝜔𝑝 = 3.8 𝑒𝑉. Also, this value specifies the length order of the system as 𝑐 𝜔𝑝⁄ ≈ 22 𝑛𝑚. For 𝑆𝑖𝑂2 

the dielectric constant is 𝜖 = 2.1. In the calculation process, we assume 𝜏−1 = 0.1 𝜔𝑝. This 

square lattice has a lattice constant 𝑎 = 104 𝑛𝑚 and radius of the sphere (core) 𝑆 = 52 𝑛𝑚 

(𝑆𝑐 = 36.4 𝑛𝑚)27. 

Now, we consider a model with two subsystems such as atom (𝐴) and its spontaneous emission 

photon (𝐹). If this atom-field pure state system cannot be expressed as a tensor product of the 

two subsystems (𝜌 ≠ 𝜌𝐴 ⊗ 𝜌𝐹), the atom and its spontaneous emission photon will be 

entangled. We utilize the reduced quantum entropy to measure the amount of atom-photon 

entanglement. To measure the degree of entanglement of a pure state 𝜌, we only need the 

atomic quantum entropy 𝑆𝐴(𝑡)45,46. The reduced quantum entropy for the bipartite pure system 

is the von-Neumann reduced entropy as defined  

 𝑆𝐴(𝐹)(𝑡) = −𝑇𝑟[𝜌𝐴(𝐹) log2 𝜌𝐴(𝐹)]. (9) 

 

We can also represent the atomic quantum entropy according to terms eigenvalues 𝜆𝐴(𝐹)(𝑡) of 

reduced density operators as a degree of entanglement (𝐷𝐸𝑀) 

 𝐷𝐸𝑀 = 𝑆𝐴(𝑡) = 𝑆𝐹(𝑡) = − ∑ 𝜆𝐴(𝑗)(𝑡) log2 𝜆𝐴(𝑗)(𝑡)5𝑗=1 , (10) 

 

where 𝜆𝐴(𝑗)
 are the eigenvalues of the 𝜌𝐴. To achieve a quantum pure state, we assume all the 

atoms initially in their ground states (𝜌11 = 1). If this reduced density matrix, 𝑆𝐴(𝑡), describes 

a (maximally) mixed subsystem, then the whole pure state 𝜌, will be (maximally) entangled. 

When entropy of entanglement is equal to 𝐸(𝜌) = log2[min(𝑑𝐴, 𝑑𝐹)], we will have a 

maximally entangled state.  

3. Results and discussions  

Now, density matrix equations (4) along with equation (10) should numerically be solved to 

reach the 𝐷𝐸𝑀. In this regard, 𝐷𝐸𝑀 relates to the atomic parameters given in equations (4), 

and will characterize the degree of atom-photon entanglement. In following discussion, all the 

parameters are scaled by the parameter Γ0 that is the decay rate of spontaneous emission in free 

space. The decay rates from level |5⟩ to level |𝑖⟩ (𝑖 = 1, 2, 3, 4) are defiend as 𝛾51 = 𝛾52 =



0.02Γ0 and 𝛾53 = 𝛾54 = Γ0. The transitions from level |3⟩ and level |4⟩ to level |1⟩ and from 

level |2⟩ to level |1⟩ are the dipole-allowed spontaneous decay rates that are equal to 𝛾′ = Γ0 

and 𝛾′′ = 0.2 Γ0, respectively. For transitions from level |3⟩ and level |4⟩ to level |2⟩, the 

dipole-allowed spontaneous decay rates are equal to 𝛾. The parameters 𝛾 and 𝜅 are obtained 

according to equations (6) in terms of Γ⊥ and Γ∥ for the distances expressed in Table (1).  

Here, we are interested in studying the steady-state and dynamical behavior of the atom-photon 

entanglement under the condition 𝛿 = 0. Note that maximum value of the entanglement for the 

N-levels atomic system is 𝐷𝐸𝑀𝑚𝑎𝑥 = log2 𝑁, where we use the concept of normalized 

entanglement as a ratio of 𝐷𝐸𝑀(𝑥) per 𝐷𝐸𝑀𝑚𝑎𝑥. Here, 𝑥 represents variables such as Rabi-

frequencies and quantum interference that may change the 𝐷𝐸𝑀. Hence, the amount of 

normalized entanglement of any N-level atomic system can be expressed as 0 ≤(𝐷𝐸𝑀(𝑥) 𝐷𝐸𝑀𝑚𝑎𝑥⁄ ) ≤ 1. For the proposed five-level quantum system, the maximum value 

of expected entanglement must be 𝐷𝐸𝑀𝑚𝑎𝑥 = log2 5 = 2.32, where its normalized value is 0 ≤ {𝐷𝐸𝑀(𝑥) 2.32⁄ } ≤ 1. 

Fig. 3, displays the time-dependent normalized behavior of 𝐷𝐸𝑀 in the absence of plasmonic 

nanostructure, i.e. 𝑑 → ∞, where Γ⊥ = Γ∥ and 𝜅 = 0. The atoms initially are in their ground 

state, 𝜌11 = 1 and 𝜌𝑖𝑗 = 0, thus the whole system is in a pure state. Therefore, the atom and its 

spontaneous emission field is initially disentangled. By increasing the normalized time, the two 

subsystems including the atom and photon reache to a mixed state, and the 𝐷𝐸𝑀 increases by 

the time. In the absence of the control field, i.e. Ω′ = 0, the five-level atomic system converts 

to a four-level one. Without the control field (Fig. 3(a)), the 𝐷𝐸𝑀 reaches to 0.56, while it 

increases to 0.68 for Ω′ ≠ 0 (Fig. 3(b)). So, in the presence of control field, the 𝐷𝐸𝑀 is higher 

than the case without control field. This is due to the existence of spontaneous emission from 

upper level |5⟩ to lover levels leading to equally population distribution of each levels.  

The steady-state behavior of the normalized 𝐷𝐸𝑀 as a function of the Rabi-frequency Ω/Γ0 

without plasmonic nanostructure is displayed in Fig. 4. The results are in a good agreement 

with Fig. 3. 

In Fig. 5, the time evolution of normalized 𝐷𝐸𝑀 is presented in the presence of plasmonic 

nanostructure with and without control field. Similarly, the atom and its spontaneous emission 

field are initially disentangled, but by increasing the normalized time the 𝐷𝐸𝑀 also increases. 

In vicinity of nanostructure, the atom and its spontaneous emission field undergoes different 



degrees of entanglement depending on the distance of atom from the plasmonic nanostructure. 

We find that for both cases Ω′ = 0 and Ω′ ≠ 0, by increasing the distance of atom from the 

plasmonic nanostructure, the atom-photon entanglement increases (Fig. 5). Similar to Fig. 3, 

for Ω′ ≠ 0 the 𝐷𝐸𝑀 is higher than Ω′ = 0. But in 𝑑 = 52 𝑛𝑚 the amount of 𝐷𝐸𝑀 for Ω′ = 0 

is about 0.8, while it reaches to 1 for Ω′ ≠ 0. This 𝐷𝐸𝑀 is the optimal normalized 

entanglement. Note that the quantum interference arising from the existence of plasmonic 

nanostructure has crucial role in atom-photon entanglement. By increasing the distance of the 

emitter from the plasmonic nanostructure, quantum interference reduces as can be seen from 

table (1). Thus, the spontaneous emission from level |3⟩ and level |4⟩ to level |1⟩ can be 

controlled by the quantum interference that depends on the distance of atom from the 

nanostructure. Then, 𝐷𝐸𝑀 will change just by the spontaneous emission of level |3⟩ and level |4⟩ to level |1⟩, where it controls by the quantum interference. 

The normalized 𝐷𝐸𝑀 as a function of the Rabi-frequency Ω/Γ0 for various distances is denoted 

in Fig. 6. It is obviously realized that by increasing the distance of atom from the plasmonic 

nanostructure, the atom-photon entanglement increases. These results are confirmed by Fig. 5, 

and we concluded that the amount of atom-photon entanglement in vicinity of the plasmonic 

nanostructure can be controlled just by the distance 𝑑. 

In order to discuss the physical mechanism of the obtained results, the population distribution 

of the bare and dressed states is analyzed in the following discussion. 

Fig. 7 shows the population distribution of the bare states. We observe that the population is 

not equally distributed among the bare states, and this may reduce the 𝐷𝐸𝑀 (Fig. 7(a)). 

However, when the population is equally distributed among the bare states, the maximum 

atom-photon entanglement is observed. Thus the obtained results in previous figures are 

approved by the population distribution. 

To give more physical insight on the maximal atom-photon entanglement, the dressed state 

formalism is also presented. Without the control field, i.e. Ω′ = 0, the transformed Hamiltonian 

can be written as  

 

𝐻̃ = −ℏ (𝛿 + 12 𝜔43) |3⟩⟨3| − ℏ (𝛿 − 12 𝜔43) |4⟩⟨4| − {12 ℏΩ[|3⟩⟨1| +|4⟩⟨1|] + 𝐻. 𝑐. }. 

(11) 

 



By calculating the eigenvalues of this Hamiltonian, using the relation det(𝐻̃ − 𝜆𝐼) = 0, we 

obtain 

 𝜆3 + 2ℏ𝛿𝜆2 + ℏ2 [𝛿2 − 14 𝜔432 − 12 |Ω|2] 𝜆 − 12 ℏ3|Ω|2𝛿 = 0, (12) 

 

where 𝜆’s are eigenvalues of this Hamiltonian operator. For 𝛿 = 0, the eigenvalue 𝜆’s are given 

by  

 𝜆1,2,3 = 0, ± 12 ℏΩ𝑑, (13) 

 

where Ω𝑑 ≡ √𝜔432 + 2|Ω|2 called generalized Rabi-frequency. So, the corresponding dressed 

states are 

 

|𝛼⟩ = |Ω|Ω𝑑 (𝜔43Ω |1⟩ − |3⟩ + |4⟩), |2⟩ = |2⟩, |𝛽⟩ = |Ω|2Ω𝑑2 +𝜔43Ω𝑑 (𝜔43+Ω𝑑Ω |1⟩ + 𝜔432 +|Ω|2+𝜔43Ω𝑑|Ω|2 |3⟩ + |4⟩), |𝜂⟩ = |Ω|2Ω𝑑2 −𝜔43Ω𝑑 (𝜔43−Ω𝑑Ω |1⟩ + 𝜔432 +|Ω|2−𝜔43Ω𝑑|Ω|2 |3⟩ + |4⟩). 

(14) 

 

When the control field Ω′ is on, transformed Hamiltonian are written as  

 
𝐻̃ = −ℏ (𝛿 + 12 𝜔43) |2⟩⟨2| − ℏ (𝛿 − 12 𝜔43) |3⟩⟨3| − ℏ(𝛿 + 𝛿′)|4⟩⟨4| −12 ℏ{Ω(|2⟩⟨1| + |3⟩⟨1|) + Ω′(|4⟩⟨2| + |4⟩⟨3|) + 𝐻. 𝑐. }. 

(15) 

 

Thus, using the relation det(𝐻̃ − 𝜆𝐼) = 0, we can reach to 

 
[𝜆 + ℏ(𝛿 + 𝛿′)][4𝜆(𝜆 + ℏ𝛿)2 − 𝜆ℏ2𝜔432 − 2ℏ2(𝜆 + ℏ𝛿)|Ω1|2] −2𝜆ℏ2(𝜆 + ℏ𝛿)|Ω2|2 = 0. 

(16) 

 

For 𝛿 = 𝛿′ = 0, eigenvalues 𝜆’s are obtained as follows 

 𝜆1,2,3,4 = 0,0, ± 12 ℏΩ𝑑, (17) 



 

where, generalized Rabi-frequency is Ω𝑑 ≡ √𝜔432 + 2(|Ω1|2 + |Ω2|2). So, the corresponding 

dressed states are 

 

|𝛼⟩ = − 1√2 (− Ω∗Ω |1⟩ − |5⟩), |2⟩ = |2⟩, |𝛽⟩ = |Ω|√𝜔432 +2|Ω|2 (𝜔43Ω |1⟩ − |3⟩ + |4⟩), 

|𝜂⟩ = |Ω|Ω𝑑 (Ω∗Ω |1⟩ + 𝜔43+Ω𝑑2Ω |3⟩ − 𝜔43−Ω𝑑2Ω |4⟩ + |5⟩), |𝜉⟩ = |Ω|Ω𝑑 (Ω∗Ω |1⟩ + 𝜔43−Ω𝑑2Ω |3⟩ − 𝜔43+Ω𝑑2Ω |4⟩ + |5⟩). 

(18) 

 

Fig. 8 demonstrates the evolution of dressed state’s population. According to 8(a), the dressed 

state |𝛼⟩ has no population distribution, and the population are equally distributed in other three 

dressed states. In this case, the system operates as a three-level dressed atom, and the maximum 

value of normalized 𝐷𝐸𝑀 should be (log2 3 log2 4⁄ ) = 0.79. This anticipation is in a good 

agreement of obtained results in Fig. 5(a) and 6(a). In Fig. 8(b), all the levels are populated, 

and the population distributed are almost equal in five dressed states. In this regards, the system 

acts as a five-level atom, and the maximum value of normalized 𝐷𝐸𝑀 should be equal to (log2 5 2.32⁄ ) = 1. This is also covering the obtained result of Fig. 5(b) and 6(b). 

Physically, existence of plasmonic nanostructure affects the transition |3⟩ (|4⟩) → |2⟩ that 

appears in parameter 𝜅. In fact, the five-level atomic system has two V-type transitions |𝑖⟩ →|1⟩, and |𝑖⟩ → |2⟩ (𝑖 = 3, 4). The second transitions are coupled due to existence of plasmonic 

nanostructure that creates the parameter 𝜅. These transitions may destroy the equality of the 

population distribution that leads in reduction of atom-photon entanglement as can be viewed 

in Fig. 7(a) and Fig. 8(a). However, this may be balanced by the other laser field namely Ω′ as 

can be confirmed in Fig. 7(b) and Fig. 8(b). 

4. Conclusion 

The entanglement of a five-level atomic system and its spontaneous emission field is 

investigated with and without plasmonic nanostructure. For two linear laser fields, two 

different cases are examined.  For turn off control laser field, the five-level system converts to 

a four-level one. In free space, the degree of created entanglement in five-level atomic system 



with its spontaneous emission is larger than the four-level atom. In the vicinity of the 

nanostructure, the atom-photon entanglement is affected by the distances of the atomic system 

from plasmonic nanostructure.  

The degree of entanglement depends on the distance of atom and the plasmonic nanostructure. 

Maximal atom-photon entanglement is obtained for a distance of 52 𝑛𝑚 from the 

nanostructure.  



References 

1. Paternostro, M., Kim, M. S. & Ham, B. S. Generation of entangled coherent states via 

cross-phase-modulation in a double electromagnetically induced transparency regime. 

Phys. Rev. A 67, 23811 (2003). 

2. Marino, A. M., Pooser, R. C., Boyer, V. & Lett, P. D. Tunable delay of Einstein–

Podolsky–Rosen entanglement. Nature 457, 859–862 (2009). 

3. Ekert, A. & Jozsa, R. Quantum algorithms: entanglement–enhanced information 

processing. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 356, 1769–1782 

(1998). 

4. Azuma, H., Bose, S. & Vedral, V. Entangling capacity of global phases and implications 

for the Deutsch-Jozsa algorithm. Phys. Rev. A 64, 62308 (2001). 

5. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum Repeaters: The Role of 

Imperfect Local Operations in Quantum Communication. Phys. Rev. Lett. 81, 5932–

5935 (1998). 

6. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H. & Zeilinger, A. Quantum 

cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000). 

7. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008). 

8. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum State Transfer and 

Entanglement Distribution among Distant Nodes in a Quantum Network. Phys. Rev. 

Lett. 78, 3221–3224 (1997). 

9. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 

(1997). 

10. Ma, Y. H., Mu, Q. X. & Zhou, L. Entangled photons produced by a three-level atom in 

free-space. Opt. Commun. 281, 2695–2699 (2008). 

11. Amniat-Talab, M., Guérin, S., Sangouard, N. & Jauslin, H.-R. Atom-photon, atom-

atom, and photon-photon entanglement preparation by fractional adiabatic passage. 

Phys. Rev. A 71, 23805 (2005). 

12. Stute, A. et al. Tunable ion–photon entanglement in an optical cavity. Nature 485, 482–

485 (2012). 



13. Kuang, L.-M. & Zhou, L. Generation of atom-photon entangled states in atomic Bose-

Einstein condensate via electromagnetically induced transparency. Phys. Rev. A 68, 

43606 (2003). 

14. Kordi, Z., Ghanbari, S. & Mahmoudi, M. Atom–photon entanglement beyond the multi-

photon resonance condition. Quantum Inf. Process. 15, 199–213 (2016). 

15. Fang, M.-F. & Zhu, S.-Y. Entanglement between a Λ-type three-level atom and its 

spontaneous emission fields. Phys. A Stat. Mech. its Appl. 369, 475–483 (2006). 

16. Sahrai, M. & Boroojerdi, V. T. A. Dynamical behavior of atom–photon entanglement 

for a four-level atom near the band edge of a 3D-anisotropic photonic crystal. Quantum 

Inf. Process. 16, 145 (2017). 

17. Sahrai, M., Arzhang, B., Taherkhani, D. & Boroojerdi, V. T. A. Control of the 

entanglement between triple quantum dot molecule and its spontaneous emission fields 

via quantum entropy. Phys. E Low-dimensional Syst. Nanostructures 67, 121–127 

(2015). 

18. Kordi, Z., Ghanbari, S. & Mahmoudi, M. Maximal atom–photon entanglement in a 

double- $$\Lambda $$ Λ quantum system. Quantum Inf. Process. 14, 1907–1918 

(2015). 

19. Tang, Z., Li, G. & Ficek, Z. Entanglement created by spontaneously generated 

coherence. Phys. Rev. A 82, 063837 (2010). 

20. Abazari, M., Mortezapour, A., Mahmoudi, M. & Sahrai, M. Phase-Controlled Atom-

Photon Entanglement in a Three-Level V-Type Atomic System via Spontaneously 

Generated Coherence. Entropy 13, 1541–1554 (2011). 

21. Lewenstein, M., Zakrzewski, J. & Mossberg, T. W. Spontaneous emission of atoms 

coupled to frequency-dependent reservoirs. Phys. Rev. A 38, 808 (1988). 

22. Zhu, S.-Y., Chen, H. & Huang, H. Quantum interference effects in spontaneous emission 

from an atom embedded in a photonic band gap structure. Phys. Rev. Lett. 79, 205 

(1997). 

23. Zhang, H. Z., Tang, S. H., Dong, P. & He, J. Quantum interference in spontaneous 

emission of an atom embedded in a double-band photonic crystal. Phys. Rev. A 65, 

63802 (2002). 



24. Garraway, B. M. & Knight, P. L. Cavity modified quantum beats. Phys. Rev. A 54, 3592 

(1996). 

25. Zhu, S.-Y., Narducci, L. M. & Scully, M. O. Quantum-mechanical interference effects 

in the spontaneous-emission spectrum of a driven atom. Phys. Rev. A 52, 4791 (1995). 

26. Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013). 

27. Paspalakis, E., Kallos, E. & Yannopapas, V. Controlled interaction of a four-level 

quantum emitter with a plasmonic nanostructure. in Journal of Physics: Conference 

Series 633, 12063 (IOP Publishing, 2015). 

28. Kühn, S., Mori, G., Agio, M. & Sandoghdar, V. Modification of single molecule 

fluorescence close to a nanostructure: radiation pattern, spontaneous emission and 

quenching. Mol. Phys. 106, 893–908 (2008). 

29. Yannopapas, V. & Vitanov, N. V. Spontaneous emission of a two-level atom placed 

within clusters of metallic nanoparticles. J. Phys. Condens. Matter 19, 96210 (2007). 

30. Gu, Y., Huang, L., Martin, O. J. F. & Gong, Q. Resonance fluorescence of single 

molecules assisted by a plasmonic structure. Phys. Rev. B 81, 193103 (2010). 

31. Sadeghi, S. M. Gain without inversion in hybrid quantum dot–metallic nanoparticle 

systems. Nanotechnology 21, 455401 (2010). 

32. Hamedi, H. R., Yannopapas, V. & Paspalakis, E. Control of nonlinear optical 

phenomena and spatially structured optical effects in a four-level quantum system near 

a plasmonic nanostructure. (2020). 

33. Yannopapas, V. Enhancement of nonlinear susceptibilities near plasmonic 

metamaterials. Opt. Commun. 283, 1647–1649 (2010). 

34. Pu, Y., Grange, R., Hsieh, C.-L. & Psaltis, D. Nonlinear optical properties of core-shell 

nanocavities for enhanced second-harmonic generation. Phys. Rev. Lett. 104, 207402 

(2010). 

35. Vafafard, A., Sahrai, M., Siahpoush, V., Hamedi, H. R. & Asadpour, S. H. Optically 

induced diffraction gratings based on periodic modulation of linear and nonlinear effects 

for atom-light coupling quantum systems near plasmonic nanostructures. Sci. Rep. 10, 

16684 (2020). 



36. Carreño, F., Antón, M. A., Yannopapas, V. & Paspalakis, E. Control of the absorption 

of a four-level quantum system near a plasmonic nanostructure. Phys. Rev. B 95, 195410 

(2017). 

37. Evangelou, S., Yannopapas, V. & Paspalakis, E. Transparency and slow light in a four-

level quantum system near a plasmonic nanostructure. Phys. Rev. A 86, 053811 (2012). 

38. Evangelou, S., Yannopapas, V. & Paspalakis, E. Modifying free-space spontaneous 

emission near a plasmonic nanostructure. Phys. Rev. A 83, 023819 (2011). 

39. Agarwal, G. S. Anisotropic Vacuum-Induced Interference in Decay Channels. Phys. 

Rev. Lett. 84, 5500–5503 (2000). 

40. Kiffner, M., Macovei, M., Evers, J. & Keitel, C. H. Vacuum-Induced Processes in 

Multilevel Atoms. in 85–197 (2010). doi:10.1016/B978-0-444-53705-8.00003-5 

41. Yannopapas, V., Paspalakis, E. & Vitanov, N. V. Plasmon-Induced Enhancement of 

Quantum Interference near Metallic Nanostructures. Phys. Rev. Lett. 103, 063602 

(2009). 

42. Li, G., Li, F. & Zhu, S. Quantum interference between decay channels of a three-level 

atom in a multilayer dielectric medium. Phys. Rev. A 64, 013819 (2001). 

43. Evangelou, S., Yannopapas, V. & Paspalakis, E. Simulating quantum interference in 

spontaneous decay near plasmonic nanostructures: Population dynamics. Phys. Rev. A 

83, 055805 (2011). 

44. Paspalakis, E., Evangelou, S., Yannopapas, V. & Terzis, A. F. Phase-dependent optical 

effects in a four-level quantum system near a plasmonic nanostructure. Phys. Rev. A 88, 

053832 (2013). 

45. Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state 

entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996). 

46. Djordjevic, I. B. Quantum Information Processing, Quantum Computing, and Quantum 

Error Correction: An Engineering Approach. (Elsevier Science, 2021). 

 

  



Figures legend 

Figure 1. Energy diagram of a five-level atomic system. 

Fig. 2. A 2D array of plasmonic nanostructures used in this study. 

Fig. 3. The time evolution of normalized 𝐷𝐸𝑀 ((𝐷𝐸𝑀(𝑡) 𝐷𝐸𝑀𝑚𝑎𝑥⁄ ) ≤ 1) of the quantum 

system in the absence of plasmonic nanostructure for (a) Ω′/Γ0 = 0, and (b) Ω′/Γ0 = Ω/Γ0 =15. 

Fig. 4. The normalized 𝐷𝐸𝑀 ((𝐷𝐸𝑀(Ω) 𝐷𝐸𝑀𝑚𝑎𝑥⁄ ) ≤ 1) of the quantum system in the 

absence of plasmonic nanostructure for (a) Ω′/Γ0 = 0, and (b) Ω′/Γ0 = Ω/Γ0. 

Fig. 5. The time evolution of normalized 𝐷𝐸𝑀 ((𝐷𝐸𝑀(𝑡) 𝐷𝐸𝑀𝑚𝑎𝑥⁄ ) ≤ 1) of the quantum 

system in the presence of plasmonic nanostructure for (a) Ω′/Γ0 = 0, and (b) Ω′/Γ0 = Ω/Γ0 =15. 

Fig. 6. The normalized 𝐷𝐸𝑀 ((𝐷𝐸𝑀(Ω) 𝐷𝐸𝑀𝑚𝑎𝑥⁄ ) ≤ 1) of the quantum system in the 

presence of plasmonic nanostructure for (a) Ω′/Γ0 = 0, and (b) Ω′/Γ0 = Ω/Γ0. 

Fig. 7. The population distribution of the bare states as a function of Rabi-frequencies at 𝑑 =52 𝑛𝑚 for (a) Ω′/Γ0 = 0, and (b) Ω′/Γ0 = Ω/Γ0.  

Fig. 8. The dressed state population distribution as a function of Rabi-frequencies at distance 𝑑 = 52 𝑛𝑚 for (a) Ω′/Γ0 = 0, and (b) Ω′/Γ0 = Ω/Γ0. 

 

 

  



Table legend 

Table 1. The values of Γ⊥ and Γ∥ according to distances of the atom from the plasmonic 

nanostructure for ℏ𝜔 = 2.4 𝑒𝑉 (Γ0 = 109 𝑛𝑠−1)27. 
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Table 

Distance 𝑑(𝑛𝑚) 10.4 20.8 31.2 41.6 52 ∞ Γ⊥ (Γ0) 27.081 6.417 1.774 0.559 0.196 1 Γ∥ (Γ0) 0.105 0.038 0.021 0.021 0.026 1 𝛾 (Γ0) 13.958 3.228 0.898 0.290 0.111 1 𝜅 (Γ0) 13.853 3.190 0.877 0.269 0.085 0 𝑝 0.993 0.988 0.977 0.928 0.766 0 

 


