1. Yang, X.-F., Wang, A., Qiao, B., Li, J., Liu, J., and Zhang, T. (2013). Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research 46, 1740-1748. 10.1021/ar300361m.
2. Coperet, C., Chabanas, M., Saint-Arroman, R.P., and Basset, J.M. (2003). Homogeneous and heterogeneous catalysis: Bridging the gap through surface organometallic chemistry. Angewandte Chemie-International Edition 42, 156-181. 10.1002/anie.200390072.
3. Pelletier, J.D.A., and Basset, J.-M. (2016). Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts. Accounts of Chemical Research 49, 664-677. 10.1021/acs.accounts.5b00518.
4. Wang, A., Li, J., and Zhang, T. (2018). Heterogeneous single-atom catalysis. Nature Reviews Chemistry 2, 65-81. 10.1038/s41570-018-0010-1.
5. Qiao, B., Wang, A., Yang, X., Allard, L.F., Jiang, Z., Cui, Y., Liu, J., Li, J., and Zhang, T. (2011). Single-atom catalysis of CO oxidation using Pt-1/FeOx. Nature Chemistry 3, 634-641. 10.1038/nchem.1095.
6. Fei, H.L., Dong, J.C., Feng, Y.X., Allen, C.S., Wan, C.Z., Volosskiy, B., Li, M.F., Zhao, Z.P., Wang, Y.L., Sun, H.T., et al. (2018). General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis 1, 63-72. 10.1038/s41929-017-0008-y.
7. Wu, X., Zhang, H., Zuo, S., Dong, J., Li, Y., Zhang, J., and Han, Y. (2021). Engineering the Coordination Sphere of Isolated Active Sites to Explore the Intrinsic Activity in Single-Atom Catalysts. Nano-Micro Letters 13, 136. 10.1007/s40820-021-00668-6.
8. Ji, S., Chen, Y., Wang, X., Zhang, Z., Wang, D., and Li, Y. (2020). Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews 120, 11900-11955. 10.1021/acs.chemrev.9b00818.
9. Guo, W., Wang, Z., Wang, X., and Wu, Y. (2021). General Design Concept for Single-Atom Catalysts toward Heterogeneous Catalysis. Advanced Materials, 2004287. 10.1002/adma.202004287.
10. Kaiser, S.K., Chen, Z., Akl, D.F., Mitchell, S., and Perez-Ramirez, J. (2020). Single-Atom Catalysts across the Periodic Table. Chemical Reviews 120, 11703-11809. 10.1021/acs.chemrev.0c00576.
11. Xia, C., Qiu, Y., Xia, Y., Zhu, P., King, G., Zhang, X., Wu, Z., Kim, J.Y., Cullen, D.A., Zheng, D., et al. (2021). General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nature Chemistry. 10.1038/s41557-021-00734-x.
12. Guo, X., Fang, G., Li, G., Ma, H., Fan, H., Yu, L., Ma, C., Wu, X., Deng, D., Wei, M., et al. (2014). Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen. Science 344, 616-619. 10.1126/science.1253150.
13. Deng, D., Chen, X., Yu, L., Wu, X., Liu, Q., Liu, Y., Yang, H., Tian, H., Hu, Y., Du, P., et al. (2015). A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Science Advances 1, e1500462. 10.1126/sciadv.1500462.
14. Yin, P., Yao, T., Wu, Y., Zheng, L., Lin, Y., Liu, W., Ju, H., Zhu, J., Hong, X., Deng, Z., et al. (2016). Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. Angewandte Chemie-International Edition 55, 10800-10805. 10.1002/anie.201604802.
15. Liu, W., Zhang, L., Liu, X., Liu, X., Yang, X., Miao, S., Wang, W., Wang, A., and Zhang, T. (2017). Discriminating Catalytically Active FeNx Species of Atomically Dispersed Fe-N-C Catalyst for Selective Oxidation of the C-H Bond. Journal of the American Chemical Society 139, 10790-10798. 10.1021/jacs.7b05130.
16. Jiang, K., and Wang, H. (2018). Electrocatalysis over Graphene Defect-Coordinated Transition-Metal Single-Atom Catalysts. Chem 4, 194-195. 10.1016/j.chempr.2018.01.013.
17. Wei, S., Li, A., Liu, J.-C., Li, Z., Chen, W., Gong, Y., Zhang, Q., Cheong, W.-C., Wang, Y., Zheng, L., et al. (2018). Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nature Nanotechnology 13, 856-+. 10.1038/s41565-018-0197-9.
18. Xu, H., Cheng, D., Cao, D., and Zeng, X.C. (2018). A universal principle for a rational design of single-atom electrocatalysts. Nature Catalysis 1, 339-348. 10.1038/s41929-018-0063-z.
19. Yang, H.B., Hung, S.-F., Liu, S., Yuan, K., Miao, S., Zhang, L., Huang, X., Wang, H.-Y., Cai, W., Chen, R., et al. (2018). Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nature Energy 3, 140-147. 10.1038/s41560-017-0078-8.
20. Zhao, L., Zhang, Y., Huang, L.-B., Liu, X.-Z., Zhang, Q.-H., He, C., Wu, Z.-Y., Zhang, L.-J., Wu, J., Yang, W., et al. (2019). Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nature Communications 10, 1278. 10.1038/s41467-019-09290-y.
21. Yan, H., Lin, Y., Wu, H., Zhang, W., Sun, Z., Cheng, H., Liu, W., Wang, C., Li, J., Huang, X., et al. (2017). Bottom-up precise synthesis of stable platinum dimers on graphene. Nature Communications 8, 1070. 10.1038/s41467-017-01259-z.
22. Guo, J., Lin, C.-Y., Xia, Z., and Xiang, Z. (2018). A Pyrolysis-Free Covalent Organic Polymer for Oxygen Reduction. Angewandte Chemie-International Edition 57, 12567-12572. 10.1002/anie.201808226.
23. Ma, L., Chen, S., Pei, Z., Huang, Y., Liang, G., Mo, F., Yang, Q., Su, J., Gao, Y., Zapien, J.A., and Zhi, C. (2018). Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc–Air Battery. ACS Nano 12, 1949-1958. 10.1021/acsnano.7b09064.
24. Sun, J., Lowe, S.E., Zhang, L., Wang, Y., Pang, K., Wang, Y., Zhong, Y., Liu, P., Zhao, K., Tang, Z., and Zhao, H. (2018). Ultrathin Nitrogen-Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media. Angewandte Chemie-International Edition 57, 16511-16515. 10.1002/anie.201811573.
25. Basset, J.M., and Ugo, R. (2009). On the Origins and Development of “Surface Organometallic Chemistry”. Modern Surface Organometallic Chemistry, 1-21. 10.1002/9783527627097.ch1
26. Serna, P., and Gates, B.C. (2014). Molecular Metal Catalysts on Supports: Organometallic Chemistry Meets Surface Science. Accounts of Chemical Research 47, 2612-2620. 10.1021/ar500170k.
27. Samantaray, M.K., D’Elia, V., Pump, E., Falivene, L., Harb, M., Ould Chikh, S., Cavallo, L., and Basset, J.-M. (2020). The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chemical Reviews 120, 734-813. 10.1021/acs.chemrev.9b00238.
28. Thomas, J.M., Raja, R., and Lewis, D.W. (2005). Single-site heterogeneous catalysts. Angewandte Chemie-International Edition 44, 6456-6482. 10.1002/anie.200462473.
29. Serna, P., and Gates, B.C. (2011). A Bifunctional Mechanism for Ethene Dimerization: Catalysis by Rhodium Complexes on Zeolite HY in the Absence of Halides. Angewandte Chemie-International Edition 50, 5528-5531. 10.1002/anie.201008086.
30. Rodenas, T., Beeg, S., Spanos, I., Neugebauer, S., Girgsdies, F., Algara-Siller, G., Schleker, P.P.M., Jakes, P., Pfaender, N., Willinger, M., et al. (2018). 2D Metal Organic Framework-Graphitic Carbon Nanocomposites as Precursors for High-Performance O-2-Evolution Electrocatalysts. Advanced Energy Materials 8, 1802404. 10.1002/aenm.201802404.
31. Wang, X.-L., Dong, L.-Z., Qiao, M., Tang, Y.-J., Liu, J., Li, Y., Li, S.-L., Su, J.-X., and Lan, Y.-Q. (2018). Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal-Organic Framework System. Angewandte Chemie-International Edition 57, 9660-9664. 10.1002/anie.201803587.
32. Zang, W., Sumboja, A., Ma, Y., Zhang, H., Wu, Y., Wu, S., Wu, H., Liu, Z., Guan, C., Wang, J., and Pennycook, S.J. (2018). Single Co Atoms Anchored in Porous N-Doped Carbon for Efficient Zinc-Air Battery Cathodes. Acs Catalysis 8, 8961-8969. 10.1021/acscatal.8b02556.
33. Jiang, H., Gu, J., Zheng, X., Liu, M., Qiu, X., Wang, L., Li, W., Chen, Z., Ji, X., and Li, J. (2019). Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy & Environmental Science 12, 322-333. 10.1039/c8ee03276a.
34. Lu, Z., Wang, B., Hu, Y., Liu, W., Zhao, Y., Yang, R., Li, Z., Luo, J., Chi, B., Jiang, Z., et al. (2019). An Isolated Zinc-Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. Angewandte Chemie-International Edition 58, 2622-2626. 10.1002/anie.201810175.
35. Yang, Z., Zhao, C., Qu, Y., Zhou, H., Zhou, F., Wang, J., Wu, Y., and Li, Y. (2019). Trifunctional Self-Supporting Cobalt-Embedded Carbon Nanotube Films for ORR, OER, and HER Triggered by Solid Diffusion from Bulk Metal. Advanced Materials 31, 1808043. 10.1002/adma.201808043.
36. Mistry, H., Varela, A.S., Kuehl, S., Strasser, P., and Cuenya, B.R. (2016). Nanostructured electrocatalysts with tunable activity and selectivity. Nature Reviews Materials 1, 16009. 10.1038/natrevmats.2016.9.
37. Zhao, M., Huang, Y., Peng, Y., Huang, Z., Ma, Q., and Zhang, H. (2018). Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem. Soc. Rev. 47, 6267-6295. 10.1039/c8cs00268a.
38. Junggeburth, S.C., Diehl, L., Werner, S., Duppel, V., Sigle, W., and Lotsch, B.V. (2013). Ultrathin 2D Coordination Polymer Nanosheets by Surfactant-Mediated Synthesis. J. Am. Chem. Soc. 135, 6157-6164. 10.1021/ja312567v.
39. Zhang, P., Chen, C., Kang, X., Zhang, L., Wu, C., Zhang, J., and Han, B. (2018). In situ synthesis of sub-nanometer metal particles on hierarchically porous metal-organic frameworks via interfacial control for highly efficient catalysis. Chemical Science 9, 1339-1343. 10.1039/c7sc04269h.
40. Xiao, X., He, C.-T., Zhao, S., Li, J., Lin, W., Yuan, Z., Zhang, Q., Wang, S., Dai, L., and Yu, D. (2017). A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy & Environmental Science 10, 893-899. 10.1039/c6ee03145e.
41. Li, H.-C., Zhang, Y.-J., Hu, X., Liu, W.-J., Chen, J.-J., and Yu, H.-Q. (2018). Metal-Organic Framework Templated Pd@PdO-Co3O4 Nanocubes as an Efficient Bifunctional Oxygen Electrocatalyst. Advanced Energy Materials 8, 1702734, 1702734. 10.1002/aenm.201702734.
42. Shi, Q., Chen, Z., Song, Z., Li, J., and Dong, J. (2011). Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors. Angewandte Chemie-International Edition 50, 672-675. 10.1002/anie.201004937.
43. Mottram, D.S., Wedzicha, B.L., and Dodson, A.T. (2002). Acrylamide is formed in the Maillard reaction. Nature 419, 448-449. 10.1038/419448a.
44. Kidena, K., Murata, S., and Nomura, M. (1996). Studies on the Chemical Structural Change during Carbonization Process. Energy & Fuels 10, 672-678. 10.1021/ef9501096.
45. Wang, T., Zhai, Y., Zhu, Y., Li, C., and Zeng, G. (2018). A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renewable & Sustainable Energy Reviews 90, 223-247. 10.1016/j.rser.2018.03.071.
46. Zhao, B., O'Connor, D., Zhang, J., Peng, T., Shen, Z., Tsang, D.C.W., and Hou, D. (2018). Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal of Cleaner Production 174, 977-987. 10.1016/j.jclepro.2017.11.013.
47. Wang, J., Huang, Z., Liu, W., Chang, C., Tang, H., Li, Z., Chen, W., Jia, C., Yao, T., Wei, S., et al. (2017). Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. Journal of the American Chemical Society 139, 17281-17284. 10.1021/jacs.7b10385.
48. Lu, B., Liu, Q., and Chen, S. (2020). Electrocatalysis of Single-Atom Sites: Impacts of Atomic Coordination. Acs Catalysis 10, 7584-7618. 10.1021/acscatal.0c01950.
49. Yang, J., Li, W., Wang, D., and Li, Y. (2020). Electronic Metal-Support Interaction of Single-Atom Catalysts and Applications in Electrocatalysis. Advanced Materials 32, 2003300. 10.1002/adma.202003300.
50. Zhang, Q., and Guan, J. (2020). Single-Atom Catalysts for Electrocatalytic Applications. Advanced Functional Materials 30, 2000768. 10.1002/adfm.202000768.
51. Li, S., Chen, B., Wang, Y., Ye, M.-Y., van Aken, P.A., Cheng, C., and Thomas, A. (2021). Oxygen-evolving catalytic atoms on metal carbides. Nature Materials. 10.1038/s41563-021-01006-2.