1. Codeluppi S, et al. (2018) Spatial organization of the somatosensory cortex revealed by osmFISH. Nature methods 15(11):932-935.
2. Moffitt JR & Zhuang X (2016) RNA imaging with multiplexed error-robust fluorescence in situ hybridization (MERFISH). Methods in enzymology 572:1-49.
3. Moffitt JR, et al. (2016) High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proceedings of the National Academy of Sciences 113(39):11046-11051.
4. Chen KH, Boettiger AN, Moffitt JR, Wang S, & Zhuang X (2015) Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348(6233).
5. Xia C, Fan J, Emanuel G, Hao J, & Zhuang X (2019) Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proceedings of the National Academy of Sciences 116(39):19490-19499.
6. Eng C-HL, Shah S, Thomassie J, & Cai L (2017) Profiling the transcriptome with RNA SPOTs. Nature methods 14(12):1153-1155.
7. Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, & Cai L (2014) Single-cell in situ RNA profiling by sequential hybridization. Nature methods 11(4):360-361.
8. Wang X, et al. (2018) Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361(6400).
9. Schiller HB, et al. (2019) The human lung cell atlas: a high-resolution reference map of the human lung in health and disease. American journal of respiratory cell and molecular biology 61(1):31-41.
10. Eng C-HL, et al. (2019) Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568(7751):235-239.
11. Park J, Liu CL, Kim J, & Susztak K (2019) Understanding the kidney one cell at a time. Kidney international 96(4):862-870.
12. Ståhl PL, et al. (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353(6294):78-82.
13. Rodriques SG, et al. (2019) Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363(6434):1463-1467.
14. Nichterwitz S, et al. (2016) Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nature communications 7(1):1-11.
15. Pal B, et al. (2017) Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nature communications 8(1):1-14.
16. Yuan Y & Bar-Joseph Z (2019) GCNG: Graph convolutional networks for inferring cell-cell interactions. bioRxiv.
17. Arnol D, Schapiro D, Bodenmiller B, Saez-Rodriguez J, & Stegle O (2019) Modeling cell-cell interactions from spatial molecular data with spatial variance component analysis. Cell reports 29(1):202-211. e206.
18. Stuart T, et al. (2019) Comprehensive integration of single-cell data. Cell 177(7):1888-1902. e1821.
19. Abdelaal T, et al. (2019) A comparison of automatic cell identification methods for single-cell RNA sequencing data. Genome biology 20(1):1-19.
20. Wolf FA, Angerer P, & Theis FJ (2018) SCANPY: large-scale single-cell gene expression data analysis. Genome biology 19(1):1-5.
21. Hao Y, et al. (2021) Integrated analysis of multimodal single-cell data. Cell.
22. Blondel VD, Guillaume J-L, Lambiotte R, & Lefebvre E (2008) Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10):P10008.
23. Traag VA, Waltman L, & Van Eck NJ (2019) From Louvain to Leiden: guaranteeing well-connected communities. Scientific reports 9(1):1-12.
24. Shekhar K, et al. (2016) Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166(5):1308-1323. e1330.
25. Pandey S, Shekhar K, Regev A, & Schier AF (2018) Comprehensive identification and spatial mapping of habenular neuronal types using single-cell RNA-seq. Current Biology 28(7):1052-1065. e1057.
26. Zhu Q, Shah S, Dries R, Cai L, & Yuan G-C (2018) Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data. Nature biotechnology 36(12):1183-1190.
27. Stoltzfus CR, et al. (2020) CytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues. Cell reports 31(3):107523.
28. Dries R, et al. (2021) Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome biology 22(1):1-31.
29. Pham D, et al. (2020) stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. bioRxiv.
30. Teng H, Yuan Y, & Bar-Joseph Z (2021) Cell Type Assignments for Spatial Transcriptomics Data. bioRxiv.
31. Zhao E, et al. (2021) Spatial transcriptomics at subspot resolution with BayesSpace. Nature Biotechnology:1-10.
32. Hu J, et al. (2021) SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature Methods:1-10.
33. Fu H, Hang X, & Chen J (2021) Unsupervised Spatial Embedded Deep Representation of Spatial Transcriptomics. bioRxiv.
34. Kipf TN & Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
35. Krizhevsky A, Sutskever I, & Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25:1097-1105.
36. LeCun Y, Bottou L, Bengio Y, & Haffner P (1998) Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11):2278-2324.
37. Veličković P, et al. (2018) Deep graph infomax. arXiv preprint arXiv:1809.10341.
38. Arthur D & Vassilvitskii S (2006) k-means++: The advantages of careful seeding. (Stanford).
39. Korsunsky I, et al. (2019) Fast, sensitive and accurate integration of single-cell data with Harmony. Nature methods 16(12):1289-1296.
40. Donjerkovic D & Scott DW (2000) Regulation of the G1 phase of the mammalian cell cycle. Cell research 10(1):1-16.
41. Tripathi V, et al. (2013) Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS genetics 9(3):e1003368.
42. Wang J, et al. (2014) MALAT1 promotes cell proliferation in gastric cancer by recruiting SF2/ASF. Biomedicine & Pharmacotherapy 68(5):557-564.
43. Lu H, et al. (2020) miR‑25 expression is upregulated in pancreatic ductal adenocarcinoma and promotes cell proliferation by targeting ABI2. Experimental and therapeutic medicine 19(5):3384-3390.
44. Merlot S, Gosti F, Guerrier D, Vavasseur A, & Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The Plant Journal 25(3):295-303.
45. Swiatek A, Lenjou M, Van Bockstaele D, Inzé D, & Van Onckelen H (2002) Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant physiology 128(1):201-211.
46. Mahdessian D, et al. (2021) Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature 590(7847):649-654.
47. Sakaue-Sawano A, et al. (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132(3):487-498.
48. Cheng C, et al. (2002) Cloning, expression and characterization of a novel human VMP gene. Molecular biology reports 29(3):281-286.
49. Li S, et al. (2018) Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. Cell research 28(2):221-248.
50. Russ AP, et al. (2000) Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404(6773):95-99.
51. Taberner L, Bañón A, & Alsina B (2020) Sensory neuroblast quiescence depends on vascular cytoneme contacts and sensory neuronal differentiation requires initiation of blood flow. Cell Reports 32(2):107903.
52. Bekkers JM (2011) Pyramidal neurons. Current biology 21(24):R975.
53. Parpura V, et al. (2017) Glutamate and ATP at the interface between signaling and metabolism in astroglia: examples from pathology. Neurochemical research 42(1):19-34.
54. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, & McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain, (Springer), pp 13-30.
55. Hie B, Bryson B, & Berger B (2019) Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nature biotechnology 37(6):685-691.