1. James JT, Dubery IA (2009) Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules 14:3922–3941. https://doi.org/10.3390/molecules14103922
2. Mook-Jung I, Shin JE, Yun HS, et al (1999) Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J Neurosci Res 58:417–425. https://doi.org/10.1002/(SICI)1097-4547(19991101)58:3<417::AID-JNR7>3.0.CO;2-G
3. Gray NE, Sampath H, Zweig JA, et al (2015) Centella asiatica Attenuates Amyloid-β-Induced Oxidative Stress and Mitochondrial Dysfunction. J Alzheimer’s Dis 45:933–946. https://doi.org/10.3233/JAD-142217
4. Farooqui AA, Farooqui T, Madan A, et al (2018) Ayurvedic Medicine for the Treatment of Dementia: Mechanistic Aspects. Evidence-based Complement Altern Med 2018:. https://doi.org/10.1155/2018/2481076
5. Kimura Y, Sumiyoshi M, Samukawa K ichi, et al (2008) Facilitating action of asiaticoside at low doses on burn wound repair and its mechanism. Eur J Pharmacol 584:415–423. https://doi.org/10.1016/j.ejphar.2008.02.036
6. Sh Ahmed A, Taher M, Mandal UK, et al (2019) Pharmacological properties of Centella asiatica hydrogel in accelerating wound healing in rabbits. BMC Complement Altern Med 19:1–7. https://doi.org/10.1186/s12906-019-2625-2
7. Liu M, Dai Y, Yao X, et al (2008) Anti-rheumatoid arthritic effect of madecassoside on type II collagen-induced arthritis in mice. Int Immunopharmacol 8:1561–1566. https://doi.org/10.1016/j.intimp.2008.06.011
8. Li H, Gong X, Zhang L, et al (2009) Madecassoside attenuates inflammatory response on collagen-induced arthritis in DBA/1 mice. Phytomedicine 16:538–546. https://doi.org/10.1016/j.phymed.2008.11.002
9. Su Z, Ye J, Qin Z, Ding X (2015) Protective effects of madecassoside against Doxorubicin induced nephrotoxicity in vivo and in vitro. Sci Rep 5:1–14. https://doi.org/10.1038/srep18314
10. Bylka W, Znajdek-Awizeń P, Studzińska-Sroka E, et al (2014) Centella asiatica in dermatology: An overview. Phyther Res 28:1117–1124. https://doi.org/10.1002/ptr.5110
11. Bylka W, Znajdek-Awizeń P, Studzińska-Sroka E, Brzezińska M (2013) Centella asiatica in cosmetology. Postep Dermatologii i Alergol 30:46–49. https://doi.org/10.5114/pdia.2013.33378
12. Prasad A, Mathur AK, Mathur A (2019) Advances and emerging research trends for modulation of centelloside biosynthesis in Centella asiatica (L.) Urban- A review. Ind. Crops Prod. 141:111768
13. Roy M A, Krishnan L, Roy Roy A (2018) Qualitative and Quantitative Phytochemical Analysis of Centella asiatica. Nat Prod Chem Res 06:4–7. https://doi.org/10.4172/2329-6836.1000323
14. Mangas S, Moyano E, Osuna L, et al (2008) Triterpenoid saponin content and the expression level of some related genes in calli of Centella asiatica. Biotechnol Lett 30:1853–1859. https://doi.org/10.1007/s10529-008-9766-6
15. Yoo NH, Kim OT, Kim JB, et al (2011) Enhancement of centelloside production from cultured plants of Centella asiatica by combination of thidiazuron and methyl jasmonate. Plant Biotechnol Rep 5:283–287. https://doi.org/10.1007/s11816-011-0173-4
16. Satheesan J, Narayanan AK, Sakunthala M (2012) Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza 22:195–202. https://doi.org/10.1007/s00572-011-0394-y
17. James JT, Tugizimana F, Steenkamp PA, Dubery IA (2013) Metabolomic analysis of methyl jasmonate-induced triterpenoid production in the medicinal herb centella asiatica (L.) urban. Molecules 18:4267–4281. https://doi.org/10.3390/molecules18044267
18. Singh J, Sabir F, Sangwan RS, et al (2014) Enhanced secondary metabolite production and pathway gene expression by leaf explants-induced direct root morphotypes are regulated by combination of growth regulators and culture conditions in Centella asiatica (L.) urban. Plant Growth Regul 75:55–66. https://doi.org/10.1007/s10725-014-9931-y
19. Tugizimana F, Ncube EN, Steenkamp PA, Dubery IA (2015) Metabolomics-derived insights into the manipulation of terpenoid synthesis in Centella asiatica cells by methyl jasmonate. Plant Biotechnol Rep 9:125–136. https://doi.org/10.1007/s11816-015-0350-y
20. Prasad A, Prakash O, Mehrotra S, et al (2016) Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum ... Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multipl. Protoplasma. https://doi.org/10.1007/s00709-016-0953-3
21. Prasad A, Prakash O, Mehrotra S, et al (2017) Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica. Protoplasma 254:335–341. https://doi.org/10.1007/s00709-016-0953-3
22. Azerad R (2016) Chemical structures, production and enzymatic transformations of sapogenins and saponins from Centella asiatica (L.) Urban. Fitoterapia 114:168–187
23. Gallego A, Ramirez-Estrada K, Vidal-Limon HR, et al (2014) Biotechnological production of centellosides in cell cultures of Centella asiatica (L) Urban. Eng. Life Sci. 14:633–642
24. Song X, Li Y, Cao X, Qi Y (2019) MicroRNAs and Their Regulatory Roles in Plant–Environment Interactions. Annu Rev Plant Biol 70:489–525. https://doi.org/10.1146/annurev-arplant-050718-100334
25. Jones-rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and Their Regulatory Roles in Plants. https://doi.org/10.1146/annurev.arplant.57.032905.105218
26. Reinhart BJ, Weinstein EG, Rhoades MW, et al (2002) MicroRNAs in plants. 1616–1626. https://doi.org/10.1101/gad.1004402.of
27. Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619. https://doi.org/10.1105/tpc.003210
28. Meyers BC, Axtell MJ (2019) Micrornas in plants: Key findings from the early years. Plant Cell 31:1206–1207. https://doi.org/10.1105/tpc.19.00310
29. Meng Y, Shao C, Wang H, Chen M (2011) The Regulatory Activities of Plant MicroRNAs : A More Dynamic Perspective 1. 157:1583–1595. https://doi.org/10.1104/pp.111.187088
30. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741
31. Sunkar R, Girke T, Jain PK, Zhu J (2005) Cloning and Characterization of MicroRNAs from Rice. 17:1397–1411. https://doi.org/10.1105/tpc.105.031682.1
32. Chamnongpol S, Maroney PA, Nilsen TW (2010) A rapid, quantitative assay for direct detection of microRNAs and other small RNAs using splinted ligation. In: MicroRNAs and the Immune System. Springer, pp 3–17
33. Kleftogiannis D, Korfiati A, Theofilatos K, et al (2013) Where we stand, where we are moving: surveying computational techniques for identifying miRNA genes and uncovering their regulatory role. J Biomed Inform 46:563–573
34. Devi K, Dey KK, Singh S, et al (2019) Identification and validation of plant miRNA from NGS data-An experimental approach. Brief Funct Genomics 18:13–22. https://doi.org/10.1093/bfgp/ely034
35. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) MiRBase: From microRNA sequences to function. Nucleic Acids Res 47:D155–D162. https://doi.org/10.1093/nar/gky1141
36. Bulgakov VP, Avramenko T V (2015) New opportunities for the regulation of secondary metabolism in plants : focus on microRNAs. Biotechnol Lett. https://doi.org/10.1007/s10529-015-1863-8
37. Gupta OP, Karkute SG, Banerjee S, et al (2017) Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Front Plant Sci 8:. https://doi.org/10.3389/fpls.2017.00374
38. Boke H, Ozhuner E, Turktas M, et al (2015) Regulation of the alkaloid biosynthesis by miRNA in opium poppy. Plant Biotechnol J 13:409–420. https://doi.org/10.1111/pbi.12346
39. Shen EM, Singh SK, Ghosh JS, et al (2017) The miRNAome of Catharanthus roseus: Identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis. Sci Rep 7:1–13. https://doi.org/10.1038/srep43027
40. Fan R, Li Y, Li C, Zhang Y (2015) Differential microRNA analysis of glandular trichomes and young leaves in Xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis. PLoS One 10:1–17. https://doi.org/10.1371/journal.pone.0139002
41. Sobhani Najafabadi A, Naghavi MR (2018) Mining Ferula gummosa transcriptome to identify miRNAs involved in the regulation and biosynthesis of terpenes. Gene 645:41–47. https://doi.org/10.1016/j.gene.2017.12.035
42. Liu J, Yuan Y, Wang Y, et al (2017) Regulation of fatty acid and flavonoid biosynthesis by miRNAs in: Lonicera japonica. RSC Adv 7:35426–35437. https://doi.org/10.1039/c7ra05800d
43. Eyles RP, Williams PH, Ohms SJ, et al (2013) microRNA profiling of root tissues and root forming explant cultures in Medicago truncatula. Planta 238:91–105. https://doi.org/10.1007/s00425-013-1871-7
44. Xu X, Jiang Q, Ma X, et al (2014) Deep sequencing identifies tissue-specific MicroRNAs and their target genes involving in the biosynthesis of tanshinones in salvia miltiorrhiza. PLoS One 9:1–10. https://doi.org/10.1371/journal.pone.0111679
45. Srivastava S, Sanchita, Singh R, et al (2018) Comparative Study of Withanolide Biosynthesis-Related miRNAs in Root and Leaf Tissues of Withania somnifera. Appl Biochem Biotechnol 185:1145–1159. https://doi.org/10.1007/s12010-018-2702-x
46. Langmead B (2011) Alignment with Bowtie. Curr Protoc Bioinforma 1–24. https://doi.org/10.1002/0471250953.bi1107s32.Aligning
47. Yang X, Li L (2011) miRDeep-P: A computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27:2614–2615. https://doi.org/10.1093/bioinformatics/btr430
48. Dai X, Zhuang Z, Zhao PX (2018) PsRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res 46:W49–W54. https://doi.org/10.1093/nar/gky316
49. Mi H, Muruganujan A, Ebert D, et al (2019) PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47:D419–D426. https://doi.org/10.1093/nar/gky1038
50. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497
51. Sangwan RS, Tripathi S, Singh J, et al (2013) De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural , functional and regulatory genes with special reference to secondary metabolism. Gene 525:58–76. https://doi.org/10.1016/j.gene.2013.04.057
52. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 25:402–408
53. Zhang B, Pan X, Cannon CH, et al (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259
54. Thakur V, Wanchana S, Xu M, et al (2011) Characterization of statistical features for plant microRNA prediction. BMC Genomics 12:108
55. Alptekin B, Akpinar BA, Budak H (2017) A Comprehensive Prescription for Plant miRNA Identification. 7:1–28. https://doi.org/10.3389/fpls.2016.02058
56. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs AND THEIR REGULATORY ROLES IN PLANTS. Annu Rev Plant Biol 57:19–53. https://doi.org/10.1146/annurev.arplant.57.032905.105218
57. Liu Q, Wang F, Axtell MJ (2014) Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay. Plant Cell 26:741–753
58. Ma X, Tang Z, Qin J, Meng Y (2015) The use of high-throughput sequencing methods for plant microRNA research. RNA Biol 12:709–719
59. Zhang J, Xue B, Gai M, et al (2017) Small RNA and Transcriptome Sequencing Reveal a Potential miRNA-Mediated Interaction Network That Functions during Somatic Embryogenesis in Lilium pumilum DC. Fisch. Front Plant Sci 8:566
60. Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16
61. Yin Z, Li Y, Han X, Shen F (2012) Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae–inoculated cotton roots. PLoS One 7:e35765
62. Nie S, Xu L, Wang Y, et al (2015) Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.). Sci Rep 5:14034
63. Yu Y, Wu G, Yuan H, et al (2016) Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses. BMC Plant Biol 16:124
64. Mondal TK, Panda AK, Rawal HC, Sharma TR (2018) Discovery of microRNA-target modules of African rice (Oryza glaberrima) under salinity stress. Sci Rep 8:570
65. Jia X-L, Li M-Y, Jiang Q, et al (2015) High-throughput sequencing of small RNAs and anatomical characteristics associated with leaf development in celery. Sci Rep 5:11093
66. Meyers BC, Axtell MJ, Bartel B, et al (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190
67. Debernardi JM, Mecchia MA, Vercruyssen L, et al (2014) Post‐transcriptional control of GRF transcription factors by micro RNA miR396 and GIF co‐activator affects leaf size and longevity. Plant J 79:413–426
68. Liebsch D, Palatnik JF (2020) MicroRNA miR396, GRF transcription factors and GIF co-regulators: A conserved plant growth regulatory module with potential for breeding and biotechnology. Curr Opin Plant Biol 53:31–42
69. Zhong H, Kong W, Gong Z, et al (2019) Evolutionary analyses reveal diverged patterns of SQUAMOSA promoter binding protein-like (Spl) gene family in Oryza genus. Front Plant Sci 10:565
70. Gou J-Y, Felippes FF, Liu C-J, et al (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522
71. Yu Z-X, Wang L-J, Zhao B, et al (2015) Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Mol Plant 8:98–110
72. Tsuji H, Aya K, Ueguchi‐Tanaka M, et al (2006) GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J 47:427–444
73. Ma Z, Hu X, Cai W, et al (2014) Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated chlorophyll biosynthesis under light conditions. PLoS Genet 10:e1004519
74. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science (80- ) 303:2022–2025
75. Curaba J, Talbot M, Li Z, Helliwell C (2013) Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley. BMC Plant Biol 13:6
76. Lauter N, Kampani A, Carlson S, et al (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci 102:9412–9417
77. Jia X, Li M, Jiang Q, et al (2015) High-throughput sequencing of small RNAs and anatomical characteristics associated with leaf development in celery. Nat Publ Gr 1–16. https://doi.org/10.1038/srep11093
78. Asha S, Sreekumar S, Soniya E V (2016) Unravelling the complexity of microRNA-mediated gene regulation in black pepper (Piper nigrum L.) using high-throughput small RNA profiling. Plant Cell Rep 35:53–63
79. Stefano P, Ivana M, Arianna G, et al (2019) Identification of microRNAs and relative target genes in Moringa oleifera leaf and callus. Sci Rep 9:1–14
80. Whitmer S, van der Heijden R, Verpoorte R (2002) Genetic Engineering of the Plant Cell Factory for Secondary Metabolite Production: Indole Alkaloid Production in Catharanthus roseus as a Model. Plant Biotechnol Transgenic Plants 92:373
81. Terryn N, Van Montagu M, Inzé D, Goossens A (2006) Functional genomic approaches to study and engineer secondary metabolism in plant cell cultures. Frontis 291–300
82. Verma N, Shukla S (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromat Plants 2:105–113
83. Wei R, Qiu D, Wilson IW, et al (2015) Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing. BMC Genomics 16:1–10
84. Najafabadi AS, Naghavi MR (2018) Mining Ferula gummosa transcriptome to identify miRNAs involved in the regulation and biosynthesis of terpenes. Gene 645:41–47
85. Kajal M, Singh K (2017) Small RNA profiling for identification of miRNAs involved in regulation of saponins biosynthesis in Chlorophytum borivilianum. BMC Plant Biol 17:265
86. Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203
87. Loc NH, Giang NT, Huy ND, Lan TTP (2017) Accumulation of madecassoside - A major component of centelloside - in centella (Centella asiatica (L.) Urban) cells elicited by salicylic acid. Period Biol 119:81–85. https://doi.org/10.18054/pb.v119i1.4386
88. Loc NH, Giang NT, Huy ND (2016) Effect of salicylic acid on expression level of genes related with isoprenoid pathway in centella (Centella asiatica (L.) Urban) cells. 3 Biotech 6:86. https://doi.org/10.1007/s13205-016-0404-z
89. Baek S, Ho T-T, Lee H, et al (2019) Enhanced biosynthesis of triterpenoids in Centella asiatica hairy root culture by precursor feeding and elicitation. Plant Biotechnol Rep 1–9
90. Loc NH, Giang NT (2012) Effects of elicitors on the enhancement of asiaticoside biosynthesis in cell cultures of centella (Centella asiatica L. Urban). Chem Pap 66:642–648. https://doi.org/10.2478/s11696-012-0168-9
91. Qiu D, Pan X, Wilson IW, et al (2009) High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew ( Taxus chinensis ). Gene 436:37–44. https://doi.org/10.1016/j.gene.2009.01.006
92. Asha S, Sreekumar S (2015) Unravelling the complexity of microRNA-mediated gene regulation in black pepper ( Piper nigrum L .) using high- throughput small RNA profiling. Plant Cell Rep. https://doi.org/10.1007/s00299-015-1866-x
93. Zhang Y, Wang Y, Gao X, et al (2018) Identification and characterization of microRNAs in tree peony during chilling induced dormancy release by high-throughput sequencing. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-22415-5
94. Sabana AA, Antony G, Rahul CU, Rajesh MK (2018) In silico identification of microRNAs and their targets associated with coconut embryogenic calli. Agri Gene 7:59–65