[1] V.R.Sanal Kumar, Vigneshwaran Sankar, Nichith Chandrasekaran, Ajith Sukumaran, Sulthan Ariff Rahman Mohamed Rafic, Roshan Vignesh Baskaran, R.S.Bharath, Charlie Oommen, Pradeep Kumar Radhakrishnan, Shiv Kumar Choudhary, “Sanal Flow Choking: A Paradigm Shift in Computational Fluid Dynamics Code Verification and Diagnosing Detonation and Hemorrhage in Real‐World Fluid‐Flow Systems,” Global Challeges, Wiley Publication, May 2020, PMCID: PMC7267099, PMID: 32837737, https://doi.org/10.1002/gch2.202000012
[2] V.R.Sanal Kumar, Nichith Chandrasekaran, Vigneshwaran Sankar, Ajith Sukumaran, et al., "Deflagration to Detonation Transition in Chemical Rockets with Sudden Expansion / Divergence Regions." AIAA Propulsion and Energy 2020 Forum, August 24-28, 2020, AIAA 2020-3520, https://doi.org/10.2514/6.2020-3520
[3] V.R. Sanal Kumar, Vigneshwaran Sankar, Nichith Chandrasekaran, Vignesh Saravanan, Vishnu Natarajan, Sathyan Padmanabhan, Ajith Sukumaran, Sivabalan Mani, Tharikaa Rameshkumar, Hema Sai Nagaraju Doddi, Krithika Vysaprasad, Sharad Sharan, Pavithra Murugesh, S.Ganesh Shankar, Mohammed Niyasdeen Nejaamtheen, Roshan Vignesh Baskaran, Sulthan Ariff Rahman Mohamed Rafic, Ukeshkumar Harisrinivasan, Vivek Srinivasan, Rajshree C J, Arun Krishnan, Abhishesh Pal, Gayathri V Panicker, and Abhirami Rajesh, “Boundary layer Blockage, Venturi Effect and Cavitation Causing Aerodynamic Choking and Shock Waves in Human Artery Leading to Hemorrhage and Massive Heart Attack – A New Perspective,” AIAA Paper No. AIAA-2018-3962. (2018). https://doi.org/10.2514/6.2018-3962
[4] V.R. SanalKumar, Vigneshwaran Sankar, Nichith Chandrasekaran, Vignesh Saravanan, Vishnu Natarajan, Sathyan Padmanabhan, Ajith Sukumaran, Sivabalan Mani, Tharikaa Rameshkumar, Hema Sai Nagaraju Doddi, Krithika Vysaprasad, Sharad Sharan, Pavithra Murugesh, S.Ganesh Shankar, Mohammed Niyasdeen Nejaamtheen, Roshan Vignesh Baskaran, Sulthan Ariff Rahman Mohamed Rafic, Ukeshkumar Harisrinivasan, and Vivek Srinivasan, “A Closed-form Analytical Model for Predicting 3D Boundary Layer Displacement Thickness for the Validation of Viscous Flow Solvers,” American Institute of Physics (AIP) Advances, 2018, 8, 025315, https://doi.org/10.1063/1.5020333.
[5] V.R.Sanal Kumar, Bharath R.S, Pradeep Kumar Radhakrishnan, Nichith Chandrasekaran, Charlie Oommen, Raghunandan B.N, Shiv Kumar Choudhary (2019) In vitro prediction of the lower-critical hemorrhage index. The Asian Society for Cardiovascular and Thoracic Surgeory, IACTSCON2019, Chennai, India, 21-24 Feb 2019. Abstract ID: 694.
[6] V.R.Sanal Kumar, Bharath RS, Nichith Chandrasekaran, Charlie Oommen, Raghunandan BN, Shiv Kumar Choudhary, Pradeep Kumar Radhakrishnan, “High Heat Capacity of Blood Reduces Risk on Myocardial Infarction,” World Congress on Cardiac Sciences-2018, IISc, Bengaluru, India, BioGenesis, The Journal of Biology and Medicine, Vol.1, November 2018.
[7] V.R.Sanal Kumar et al., Very Low and High Blood Viscosity Are Risk Factors for Internal-Flow-Choking Causing Asymptomatic Cardiovascular Disease, Journal of American College of Cardiology, JACC082220-4360, August 2020 (Under review).
[8] V.R.Sanal Kumar et al., Lopsided Blood-thinning Drug Increases the Risk of Internal Flow Choking Leading to Shock Wave Generation Causing Asymptomatic Cardiovascular Disease, Global Challeges, gch2.202000076, August 2020 (Under review).
[9] V.R.Sanal Kumar, Vigneshwaran Sankar, Nichith Chandrasekaran, and Sulthan Ariff Rahman Mohamed Rafic, “Discovery of SANAL flow choking phenomenon,” Patent Application No. 201841049355, Chennai, India, Date of online publication: January 4, 2019.
[10] J.Buckmaster, P.Clavin, A.Liñán, M.Matalon, N.Peters, G.Sivashinsky, F.A.Williams, Combustion theory and modeling, Proceedings of the Combustion Institute, Volume 30, Issue 1, January 2005, Pages 1-19.
[11] Charles K.Westbrook, YasuhiroMizobuchi, Thierry J.Poinsot, Phillip J.Smith, JürgenWarnatz, Computational combustion, Proceedings of the Combustion Institute, Volume 30, Issue 1, January 2005, Pages 125-157
[12] Viswanath R.Katta, Kevin Y.Cho, John L.Hoke, Joshua R.Codoni, Frederick R.Schauer, William M.Roquemore, Effect of increasing channel width on the structure of rotating detonation wave, Proceedings of the Combustion Institute, Volume 37, Issue 3, 2019, Pages 3575-3583.
[13] AkiraKawasaki, TomoyaInakawa, JiroKasahara, KeisukeGoto, KenMatsuoka, AkikoMatsuo, IkkohFunaki, Critical condition of inner cylinder radius for sustaining rotating detonation waves in rotating detonation engine thruster, Proceedings of the Combustion Institute, Volume 37, Issue 3, 2019, Pages 3461-3469.
[14] Scott I.Jackson, Carlos Chiquete, Mark Short, An intrinsic velocity–curvature–acceleration relationship for weakly unstable gaseous detonations, Proceedings of the Combustion Institute, Volume 37, Issue 3, 2019, Pages 3601-3607.
[15] J.Chao, T.Otsuka, J.H.S.Lee, An experimental investigation of the onset of detonation, Proceedings of the Combustion Institute, Volume 30, Issue 2, January 2005, Pages 1889-1897.
[16] Jian-Ling Li, Wei Fan, Chuan-Jun Yan, Hong-Yan Tu, Kai-Cheng Xie Performance enhancement of a pulse detonation rocket engine, Proceedings of the Combustion Institute, Volume 33, Issue 2, 2011, Pages 2243-2254.
[17] Elaine S.Oran, Understanding explosions – From catastrophic accidents to creation of the universe, Proceedings of the Combustion Institute, Volume 35, Issue 1, 2015, Pages 1-35.
[18] ShinichiMaeda, Masashi Fujisawa, ShogoIenaga, Keisuke Hirahara, Tetsuro Obara, Effect of sandpaper-like small wall roughness on deflagration-to-detonation transition in a hydrogen–oxygen mixture, Proceedings of the Combustion Institute, Volume 37, Issue 3, 2019, Pages 3609-3616.
[19] Craig T. Johansen, Gaby Ciccarelli, Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel, Combustion and Flame, Volume 156, Issue 2, February 2009, Pages 405-416.
[20] Scott I.Jackson, Larry G.Hill, Runaway reaction due to gas-dynamic choking in solid explosive containing a single crack, Proceedings of the Combustion Institute, Volume 32, Issue 2, 2009, Pages 2307-2313
[21] J Czerwinska (2009) Continuum and Non-continuum Models for Micro- and Nanoflows, VKI-RTO lectures monography, 2009, https://pdfs.semanticscholar.org/cc1f/94aa7294753c3304dd3e2cafbf2c9c801fa9.pdf
[22] Xiaohui Lin, Fu-bing Bao, Xiaoyan Gao, and Jiemin Chen, Molecular Dynamics Simulation of Nanoscale Channel Flows with Rough Wall Using the Virtual-Wall Model, Journal of Nanotechnology , Volume 2018, https://doi.org/10.1155/2018/4631253
[23] M. W. Collins and C. S. König, Micro and Nano Flow Systems for Bioanalysis, Springer, New York, NY, USA, 2012.
[24] M. Z. Yu, X. T. Zhang, G. D. Jin, J. Z. Lin, and M. Seipenbusch, “A new moment method for solving the coagulation equation for particles in Brownian motion,” Aerosol Science and Technology, vol. 42, no. 9, pp. 705–713, 2008.View at: Publisher Site | Google Scholar
[25] M. Gad-el-Hak, MEMS: Introduction and Fundamentals, CRC Press, Boca Raton, FL, USA, 2010.
[26] Whitby, M., Quirke, N. Fluid flow in carbon nanotubes and nanopipes. Nature Nanotech 2, 87–94 (2007). https://doi.org/10.1038/nnano.2006.175
[27] Longhurst, M. & Quirke, N. Environmental effects on the radial breathing modes of carbon nanotubes in water. J. Chem. Phys. 124, 234708 (2006).
[28] Sokhan, V. P., Nicholson, D. & Quirke N. Fluid flow in nanopores: accurate boundary conditions for carbon nanotubes. J. Chem. Phys. 117, 8531–8539 (2002).
[29] Supple, S. & Quirke, N. Molecular dynamics of transient oil fl ows in nanopores I: Imbibition speeds for single wall carbon nanotubes. J. Chem. Phys. 121, 8571–8579 (2004).
[30] Qi-Long Yan, Michael Gozin, Feng-Qi Zhao, Adva Cohen and Si-Ping Pang, Highly energetic compositions based on functionalized carbon nanomaterials, Nanoscale, Issue 9, 2016
[31] Krishnan, D., Kim, F., Luo, J., Cruz-Silva, R., Cote, L. J., Jang, H. D., & Huang, J. (2012). Energetic graphene oxide: Challenges and opportunities. Nano Today, 7(2), 137-152. https://doi.org/10.1016/j.nantod.2012.02.003
[32] Mattia, D., et al. Effect of graphitization on the wettability and electrical conductivity of CVDcarbon nanotubes and fi lms. J. Phys. Chem. B 110, 9850–9855 (2006).
[33] Skoulidas, A. I., Ackerman, D. M., Johnson, J. K. & Sholl, D. S. Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89, 185901 (2002)., https://doi.org/10.1103/PhysRevLett.89.185901
[34] Ermolaev, B.S., Belyaev, A.A., Viktorov, S.B. et al. Nonideal regimes of deflagration and detonation of black powder. Russ. J. Phys. Chem. B 4, 428–439 (2010). https://doi.org/10.1134/S1990793110030103.
[35] G. V. Sakovich , A. S. Zharkov and E. A. Petrov , Results of research into the physicochemical processes of detonation synthesis and nanodiamond applications, Nanotechnol. Russ., 2013, 8 , 581 —591
[36] MinfengHuo, LiyingWang, YuChen, JianlinShi, Nanomaterials/microorganism-integrated microbiotic nanomedicine, Nano Today, Volume 32, June 2020, 100854, https://doi.org/10.1016/j.nantod.2020.100854
[37] J.J.Wang, R.T.Zheng, J.W.Gao, G.Chen, Heat conduction mechanisms in nanofluids and suspensions, Nano Today, Volume 7, Issue 2, April 2012, Pages 124-136, https://doi.org/10.1016/j.nantod.2012.02.007
[38] SabineHauert, Spring Berman, Radhika Nagpal, Sangeeta N.Bhatia, A computational framework for identifying design guidelines to increase the penetration of targeted nanoparticles into tumors, Nano Today, Volume 8, Issue 6, December 2013, Pages 566-576, https://doi.org/10.1016/j.nantod.2013.11.001
[39] Cordelia Sealy, A new twist on growing carbon nanotubes, Nano Today, Volume 30, February 2020, 100840, https://doi.org/10.1016/j.nantod.2020.100840
[40] The risks of nanomaterial risk assessment. Nat. Nanotechnol. 15, 163 (2020). https://doi.org/10.1038/s41565-020-0658-9
[41] Matsumoto, Y., Nichols, J. W., Toh, K., Nomoto, T., Cabral, H., Miura, Y., Kataoka, K. (2016). Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nature Nanotechnology, 11(6), 533–538. doi:10.1038/nnano.2015.342
[42] White, S., Geubelle, P. Get ready for repair-and-go. Nature Nanotech 5, 247–248 (2010). https://doi.org/10.1038/nnano.2010.66
[43] Cingolani, R. The road ahead. Nature Nanotech 8, 792–793 (2013). https://doi.org/10.1038/nnano.2013.238
[44] Faria, M., Björnmalm, M., Thurecht, K.J. et al. Minimum information reporting in bio–nano experimental literature. Nature Nanotech 13, 777–785 (2018). https://doi.org/10.1038/s41565-018-0246-4
[45] Moscatelli, A. Nanoparticles go with the flow. Nature Nanotech (2013). https://doi.org/10.1038/nnano.2013.37
[46] V.R.Sanal Kumar, “Biofluid Choking a Paradigm Shift in the Diagnostic Sciences of Stroke - Blood Pressure Ratio and Heat Capacity Ratio Are the Risk Factors for Hemorrhage and Heart Attack,” OSF Preprints, February 5, 2020, doi:10.31219/osf.io/bce2n.
[47] V.R.Sanal Kumar, Shiv Kumar Choudhary, Pradeep Kumar Radhakrishnan, Suresh Menon, Vrishank Raghav, K. K. Narayanan Namboodiri, Sapna Erat Sreedharan, Bharath R.S, Nichith Chandrasekaran, Charlie Oommen, Vigneshwaran Sankar, Ajith Sukumaran, Arun Krishnan, Abhishesh Pal, Tharikaa Ramesh kumar, Abhirami Rajesh, “Critical Blood Pressure Ratio and Memory Effects Are Risk Factors for Stroke - Discovery of Biofluid Choking a Paradigm Shift in the Diagnostics Sciences of Hemorrhage and Ischaemic Heart Disease.” OSF Preprints, February 5, 2020, doi:10.31219/osf.io/t67jv.
[48] V.R.Sanal Kumar, Raghunandan, B.N., Kawakami,T., Kim, H.D., Setoguchi,T., and Raghunathan,S.,“Studies on Boundary Layer Blockage and Internal Flow Choking in Dual-thrust Motors,”Journal of Propulsion and Power, Vol.24, No.2, 2008, pp. 224-234, doi: 10.2514/1.30649
[49] V.R.Sanal Kumar, H.D.Kim, B.N.Raghunandan, A.Sameen,T.Setoguchi, and S.Raghunathan, Fluid-Throat Induced Shock Waves During the Ignition Transient of Solid Rockets, AIAA Journal of Spacecraft and Rockets, Vol. 43, No. 1, (2006) 225–228.
[50] V.R.Sanal Kumar, B.N.Raghunandan, H.D.Kim, A.Sameen,T.Setoguchi, and S.Raghunathan, Starting Transient Flow Phenomena in Inert Simulators of SRMs with Divergent Ports,” AIAA Journal of Propulsion and Power, Vol. 22, No. 5, (2006) 1138–1141.
[51] V.R.Sanal Kumar, B.N.Raghunandan, H.D.Kim, A.Sameen, T.Setoguchi, and S.Raghunathan, Studies on Internal Flow Choking in Dual-Thrust Motors,” AIAA Journal of Spacecraft and Rockets, Vol. 43, No. 5. (2006) 1139-1143.
[52] V R Sanal Kumar, Vigneshwaran Sankar, Nichith Chandrasekaran, Sulthan Ariff Rahman M and Roshan Vignesh Baskaran, Modeling of Sanal Flow Choking Condition and Design Optimization of High Performance Dual-thrust SRMs, AIAA 2018-4693. https://doi.org/10.2514/6.2018-4693
[53] VR Sanal Kumar, Vigneshwaran Sankar, Nichith Chandrasekaran, Pavithra Murugesh, Sulthan Ariff Rahman M and Roshan Vignesh Baskaran, Prediction of 3D Boundary Layer Blockage and the Grain Design Optimization of HVT Dual-thrust Hybrid Rockets, AIAA 2018-4446, https://doi.org/10.2514/6.2018-4446.
[54] Nichith Chandrasekaran, Vigneshwaran Sankar, Sathyan Padmanabhan, V.R.Sanal Kumar, Ajith Sukumaran, Sivabalan Mani and Pavithra Murugesh, Studies on Oscillating Boundarylayer During the Ignition Transient of Dual-thrust Solid Rocket Motors, AIAA 2017-4691, 53rd AIAA/SAE/ASEE Joint Propulsion Conference, https://doi.org/10.2514/6.2017-4691
[55] Nichith Chandrasekaran, Vigneshwaran Sankar, Mohammed Niyasdeen Nejaamtheen, Kumaresh Selvakumar, Sulthan A. Rahman and V R Sanal Kumar, Analytical and Numerical Predictions of Boundary Layer Blockage in Dual Thrust Motors, 2018 Joint Propulsion Conference, , July 9-11, 2018, Cincinnati, Ohio, U.S.A., AIAA 2018-4880, https://doi.org/10.2514/6.2018-4880
[56] Vigneshwaran Sankar, Vishnu Natarajan, Nichith Chandrasekaran, Sulthan Ariff Rahman M, Roshan Vignesh Baskaran, and V.R.Sanal Kumar, 3D Boundary Layer Blockage and the Average Friction Coefficient at the Sanal Flow Choking Condition for the CFD Code Validation, Calibration and Verification, AIAA 2018-4883, https://doi.org/10.2514/6.2018-4883
[57] Ajith S et al. and V.R.Sanal Kumar, Studies on Flame Spread Acceleration and Detonation Kernel in a Dual-thrust Rocket, AIAA Propulsion and Energy 2019 Forum, AIAA 2019-4209, https://doi.org/10.2514/6.2019-4209.
[58] Victor S Abrukov, Alexander N. Lukin, Charlie Oommen,Nichith Chandrasekaran, Rajaghatta S. Bharath, V.R Sanal Kumar, Mikhail V Kiselev, and Darya A Anufrieva, Development of the Multifactorial Computational Models of the Solid Propellants Combustion by Means of Data Science Methods – Phase II, AIAA 2018-4961, AIAA Propulsion and Energy Forum. https://doi.org/10.2514/6.2018-4961
[59] M. Brust, C. Schaefer, R. Doerr, L. Pan, M. Garcia, P. E. Arratia, C. Wagner, Phys. Rev. Lett. 2013, 110, 078305
[60] S. Varchanisa, Y. Dimakopoulosa, Christian Wagnerb, J. Tsamopoulosa, Soft Matter,2018, DOI: 10.1039/C8SM00061A
[61] Frank J. Millero, Richard W. Curry, and Walter Drost-Hansen, Isothermal Compressibility of Water at Various Temperatures, Journal of Chemical and Engineering Data, Vol. 14, No. 4, October 1969, pp. 422-425, https://doi.org/10.1021/je60043a018
[62] Rana A. Fine and Frank J. Millero, Compressibility of Water as a Function of Temperature and Pressure, AIP The Journal of Chemical Physics, 59(10):5529-5536, November 1973, DOI: 10.1063/1.1679903.
[63] T.Hayat, Sohail A.Khan, M.Ijaz Khan, A.Alsaedi, Theoretical investigation of Ree–Eyring nanofluid flow with entropy optimization and Arrhenius activation energy between two rotating disks, Computer Methods and Programs in Biomedicine, Volume 177, August 2019, Pages 57-68, https://doi.org/10.1016/j.cmpb.2019.05.012
[64] T.Hayat, Sohail A. Khan, M.Ijaz Khan, A.Alsaedi, Theoretical investigation of Ree–Eyring nanofluid flow with entropy optimization and Arrhenius activation energy between two rotating disks, Computer Methods and Programs in Biomedicine, Volume 177, August 2019, Pages 57-68, https://doi.org/10.1016/j.cmpb.2019.05.012
[65] T.Hayat, M. Ijaz Khan, M.Waqas, A.Alsaedi, M.Farooq, Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid, Computer Methods in Applied Mechanics and Engineering, Volume 315, 1 March 2017, Pages 1011-1024, https://doi.org/10.1016/j.cma.2016.11.033
[66] T.Hayat. M. IjazKhan, M.Farooq, Tabassam Yasmeen, A.Alsaedi, Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions, Journal of Molecular Liquids, Volume 220, August 2016, Pages 49-55, https://doi.org/10.1016/j.molliq.2016.04.032
[67] Tasawar Hayat, Muhammad Ijaz Khan, Sumaira Qayyum, Ahmed Alsaedi, Entropy generation in flow with silver and copper nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 539, 20 February 2018, Pages 335-346, https://doi.org/10.1016/j.colsurfa.2017.12.021
[68] Tasawar Hayat, Muhammad Ijaz Khan, Ahmed Alsaedi, Muhammad Imran Khan, Joule heating and viscous dissipation in flow of nanomaterial by a rotating disk, International Communications in Heat and Mass Transfer, Volume 89, December 2017, Pages 190-197, https://doi.org/10.1016/j.icheatmasstransfer.2017.10.017
[69] Tasawar Hayat, Muhammad Ijaz Khan, Tufail Ahmad Khan, Muhammad Imran Khan, Salman Ahmad, Ahmed Alsaedi, Entropy generation in Darcy-Forchheimer bidirectional flow of water-based carbon nanotubes with convective boundary conditions, Journal of Molecular Liquids, Volume 265, 1 September 2018, Pages 629-638, https://doi.org/10.1016/j.molliq.2018.06.017
[70] Tasawar Hayat, Sumaira Qayyum, Muhammad Ijaz Khan, Ahmed Alsaedi, Current progresses about probable error and statistical declaration for radiative two phase flow using Ag H2O and Cu H2O nanomaterials, International Journal of Hydrogen Energy, Volume 42, Issue 49, 7 December 2017, Pages 29107-29120, https://doi.org/10.1016/j.ijhydene.2017.09.124
[71] Muhammad Ijaz Khan, Muhammad Waqas, Tasawar Hayat, Ahmed Alsaedi, A comparative study of Casson fluid with homogeneous-heterogeneous reactions, Journal of Colloid and Interface Science, Volume 498, 15 July 2017, Pages 85-90, https://doi.org/10.1016/j.jcis.2017.03.024
[72] M. Ijaz Khan, Sumaira Qayyum, T.Hayat, M. ImranKhan, A.Alsaedi, Tufail Ahmad Khan, Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection, Physics Letters A, Volume 382, Issue 31, 10 August 2018, Pages 2017-2026, https://doi.org/10.1016/j.physleta.2018.05.021
[73] M.Ijaz Khan, AmitKumar, T.Hayat, M.Waqas, Ramayan Singh, Entropy generation in flow of Carreau nanofluid, Journal of Molecular Liquids, Volume 278, 15 March 2019, Pages 677-687, https://doi.org/10.1016/j.molliq.2018.12.109
[74] Madiha Rashid, M. IjazKhan, Tasawar Hayat, M. Imran Khan, Ahmed Alsaedi, Entropy generation in flow of ferromagnetic liquid with nonlinear radiation and slip condition, Journal of Molecular Liquids, Volume 276, 15 February 2019, Pages 441-452, https://doi.org/10.1016/j.molliq.2018.11.148
[75] Waleed Ahmed Khan, M, Ijaz Khan, M., Hayat, T., Alsaedi, A., Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation, Physica B: Physics of Condensed Matter, Volume 534, p. 113-119, 10.1016/j.physb.2018.01.023
[76] Sumaira Qayyum, M.Ijaz Khan, T.Hayat, A.Alsaedi, M.Tamoor, Entropy generation in dissipative flow of Williamson fluid between two rotating disks, International Journal of Heat and Mass Transfer, Volume 127, Part C, December 2018, Pages 933-942, https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.034
[77] Sumaira Qayyum, T.Hayat, Muhammad Ijaz Khan, Muhammad Imran Khan, A.Alsaedi, Optimization of entropy generation and dissipative nonlinear radiative Von Karman's swirling flow with Soret and Dufour effects, Journal of Molecular Liquids, Volume 262, 15 July 2018, Pages 261-274, https://doi.org/10.1016/j.molliq.2018.04.010
[78] A.K. Pandey, M. Kumar, Boundary layer flow and heat transfer analysis on Cu-water nanofluid flow over a stretching cylinder with slip, Alexandria Eng. J. (2017), http://dx.doi.org/10.1016/j.aej.2017.01.017
[79] Michael A. Willcox, M. Quinn Brewster, K. C. Tang, D. Scott Stewart, and Igor Kuznetsov, “Solid Rocket Motor Internal Ballistics Simulation Using Three-Dimensional Grain Burnback,” Journal of Propulsion and Power, Vol. 23, No. 3, May–June 2007. doi: 10.2514/1.22971
[80] Blomshield, F. S., and Mathes, H. B., “Pressure Oscillations in Post- Challenger Space Shuttle Redesigned Solid Rocket Motors,” Journal of Propulsion and Power, Vol. 9, No. 2, March–April 1993, pp. 217–221. doi: 10.2514/3.23612
[81] Balachandar, S., Buckmaster, J. D., and Short, M., “The Generation of Axial Vorticity in Solid-Propellant Rocket-Motor Flows,” Journal of Fluid Mechanics, Vol. 429, No. 1, Feb. 2001, pp. 283–305. doi: 10.1017/S0022112000002688
[82] Wang, J and Joseph, D.D., Boundary-layer analysis for effects of viscosity of the irrotational flow on the flow induced by a rapidly rotating cylinder in a uniform stream, J. Fluid Mech. (2006), vol. 557, pp. 167–190. doi: 10.1017/S0022112006009670
[83] Anderson, J.D. Jr. Modern Compressible Flow, with Historical Perspective,” Fourth Edition, McGraw-Hill Publishing Company. (2007)
[84] John S. Pellerito and Joseph F. Polak, Introduction to Vascular Ultrasonography, 6th Edn., Elsevier, ISBN: 9781437714173, eBook ISBN: 9780323248303, May 2012.
[85] Menter, F.R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, pp. 1598-1605, 1994. doi: 10.2514/3.12149
[86] Elaine S.OranVadim N.Gamezo, Origins of the deflagration-to-detonation transition in gas-phase combustion, Combustion and Flame, Volume 148, Issues 1–2, January 2007, Pages 4-47
[87] Li, Q., Kellenberger, M., & Ciccarelli, G. (2020). Geometric influence on the propagation of the quasi-detonations in a stoichiometric H2-O2 mixture. Fuel, 269, 117396. doi:10.1016/j.fuel.2020.117396
[88] He, C., Zhang, J., & Shreeve, J. M. (2013). Dense Iodine-Rich Compounds with Low Detonation Pressures as Biocidal Agents. Chemistry - A European Journal, 19(23), 7503–7509. doi:10.1002/chem.201300565
[89] Yang, Q., Yang, G., Zhang, W., Zhang, S., Yang, Z., Xie, G., … Gao, S. (2017). Superior Thermostability, Good Detonation Properties, Insensitivity, and the Effect on the Thermal Decomposition of Ammonium Perchlorate for a New Solvent-Free 3D Energetic PbII -MOF. Chemistry - A European Journal, 23(38), 9149–9155. doi:10.1002/chem.201701325
[90] Wang, F., Wang, G., Du, H., Zhang, J., & Gong, X. (2011). Theoretical Studies on the Heats of Formation, Detonation Properties, and Pyrolysis Mechanisms of Energetic Cyclic Nitramines. The Journal of Physical Chemistry A, 115(47), 13858–13864. doi:10.1021/jp2047536
[91] Lu, Y., Zhu, Z., Wu, W., & Liu, Z. (2002). Detonation chemistry of a CHNO explosive: catalytic assembling of carbon nanotubes at low pressure and temperature state. Chemical Communications, (22), 2740–2741. doi:10.1039/b207166e
[92] Richard L. Li, Jonathan Russ, Costas Paschalides, Giovanni Ferrari, Haim Waisman, Jeffrey W. Kysar, David Kalfa, Mechanical considerations for polymeric heart valve development: Biomechanics, materials, design and manufacturing, Biomaterials, Volume 225, December 2019, 119493, DOI: https://doi.org/10.1016/j.biomaterials.2019.119493
[93] Jiayin Fu, Yingchao Su, Yi-Xian Qin, Yufeng Zheng, Yadong Wang, Donghui Zhu, Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium and zinc, Biomaterials, Volume 230, February 2020, 119641, DOI: https://doi.org/10.1016/j.biomaterials.2019.119641
[94] Adebiyi AA, Taslim ME, Crawford KD., The use of computational fluid dynamic models for the optimization of cell seeding processes, Biomaterials. 2011 Dec;32(34):8753-70. doi: 10.1016/j.biomaterials.2011.08.028. Epub 2011 Aug 31.
[95] Savoji H, Mohammadi MH, Rafatian N, Toroghi MK, Wang EY, Zhao Y, Korolj A, Ahadian S, Radisic M, Cardiovascular disease models: A game changing paradigm in drug discovery and screening, Biomaterials. 2019 Apr;198:3-26. doi: 10.1016/j.biomaterials.2018.09.036. Epub 2018 Oct 1.
[96] Marozas, I. A., Anseth, K. S., & Cooper-White, J. J. (2019). Adaptable boronate ester hydrogels with tunable viscoelastic spectra to probe timescale dependent mechanotransduction. Biomaterials, 119430. doi:10.1016/j.biomaterials.2019.119430
[97] Välimaa, T., Laaksovirta, S., Tammela, T. L. et al. (2002). Viscoelastic memory and self-expansion of self-reinforced bioabsorbable stents. Biomaterials, 23(17), 3575–3582. doi:10.1016/s0142-9612(02)00076-5
[98] H. C Gledhill, I. G Turner, C Doyle, In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings, Biomaterials, Volume 22, Issue 111 June 2001Pages 1233-1240
[99] Gledhill, H. C., Turner, I. G., & Doyle, C. (1999). Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications. Biomaterials, 20(4), 315–322. doi:10.1016/s0142-9612(98)00166-5
[100] Pelaz, B., Alexiou, C., Alvarez-Puebla, R. A., Alves, F., Andrews, A. M., Ashraf, S., … Brendel, C. (2017). Diverse Applications of Nanomedicine. ACS Nano, 11(3), 2313–2381. doi:10.1021/acsnano.6b06040
[101] V.R.Sanal Kumar et al., Streamtube Flow-Choking in Nanoscale Systems: An Exact Prediction of the 3D Boundary-Layer-Displacement-Thickness of Diabatic Flows at the Zero-Slip-Length, Nano Today (under editorial review).
[102] Seifert, G. The physics of explosive chemistry. Nature Phys 4, 12–13 (2008). https://doi.org/10.1038/nphys824
[103] M. Moseler and U. Landman, Formation, stability, and breakup of nanojets, Science 289, 1165 (2000).
[104] Chengxi Zhao, Duncan A. Lockerby, and James E. Sprittles, Dynamics of liquid nanothreads: Fluctuation-driven instability and rupture, Phys. Rev. Fluids 5, 044201 – Published 2 April 2020.
[105] Holland, D. M., Borg, M. K., Lockerby, D. A., & Reese, J. M. (2015). Enhancing nano-scale computational fluid dynamics with molecular pre-simulations: Unsteady problems and design optimisation. Computers & Fluids, 115, 46–53. doi:10.1016/j.compfluid.2015.03.023
[106] Singh, H., & Myong, R. S. (2018). Critical Review of Fluid Flow Physics at Micro- to Nano‐scale Porous Media Applications in the Energy Sector. Advances in Materials Science and Engineering, 2018, 1–31. doi:10.1155/2018/9565240
[107] Burrows, A. Supernova explosions in the Universe. Nature 403, 727–733 (2000). https://doi.org/10.1038/35001501
[108] Woosley, S. E., Wunsch, S., Kuhlen, M., Carbon Ignition in Type Ia Supernovae: An Analytic Model, The Astrophysical Journal, Volume 607, Issue 2, pp. 921-930., June 2004, 10.1086/383530
[109] NEWITT, D. Hydrodynamical Theory of Detonation and Shock Waves. Nature 172, 699 (1953). https://doi.org/10.1038/172699a0
[110] Creighton, T. An explosion of sound. Nature Phys 2, 581–582 (2006). https://doi.org/10.1038/nphys387
[111] Reed, E., Riad Manaa, M., Fried, L. et al. A transient semimetallic layer in detonating nitromethane. Nature Phys 4, 72–76 (2008). https://doi.org/10.1038/nphys806
[112] Pasachoff, J., Pasachoff, N. Appointment at Trinity. Nature Phys 1, 74–75 (2005). https://doi.org/10.1038/nphys165
[113] Koolivand, A., Dimitrakopoulos, P. Deformation of an elastic capsule in a microfluidic T-junction: settling shape and moduli determination. Microfluid Nanofluid 21, 89 (2017). https://doi.org/10.1007/s10404-017-1923-6
[114] Jambon-Puillet, E., Jones, T.J. & Brun, P. Deformation and bursting of elastic capsules impacting a rigid wall. Nat. Phys. 16, 585–589 (2020). https://doi.org/10.1038/s41567-020-0832-x
[115] Gamezo, V. N., Khokhlov, A. M., Oran, E. S., Chtchelkanova, A. Y. & Rosenberg, R. O. Thermonuclear supernovae: Simulations of the deflagration stage and their implications. Science 299, 77–81 (2003).
[116] Hillebrandt, W. & Niemeyer, J. C. Type Ia supernova explosion models. Annu. Rev. Astron. Astrophys. 38, 191–230 (2000).
[117] Nomoto, K., Iwamoto, K. & Kishimoto, N. Type Ia supernovae; their origin and possible applications in cosmology. Science 276, 1378–1382 (1997).
[118] 1. Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. 101, 181–235 (1995).
[119] Nomoto, K. & Hashimoto, M. Pre-supernova evolution of massive stars. Phys. Rep. 163, 13–36 (1988).
[120] Woosley, S. E., Eastman, R. G. & Schmidt, B. P. Gamma-ray bursts and type Ic supernova SN 1998bw. Astrophys. J. 516, 788– 796 (1999).
[121] Chiao, M. Novel observations. Nature Phys 10, 791 (2014). https://doi.org/10.1038/nphys3155